RESUMO
Introduction: When piglets are exposed to pathogens for a long period, the immune system organs, among them the spleen, play a major role in combating the stress caused by those pathogens. In the present study, the effect on splenocyte function was investigated in a model of weaned piglets in which stress was induced by multiple low doses of lipopolysaccharide (LPS). Material and Methods: Forty-eight 28-day-old piglets were divided into two groups: the LPS group and the control group. During the experimental period of thirteen days, the LPS group was intraperitoneally injected with LPS (100 µg/kg) once per day, and the control group was injected with the same volume of 0.9% sterile saline. On the 1st, 5th, 9th and 13th days, the piglets' spleens were collected for isolating splenocytes. The proliferation ability of splenocytes was evaluated by the cell-counting-kit 8 method. Flow cytometry was used to detect cell cycle stage and apoptosis, and the nitric oxide level of cell supernatant was also tested. Results: In the experimental group, the proliferation ability of splenocytes was enhanced, the proportion of cells in the G0/G1 phase was smaller, and cells were promoted to the S and G2/M phases. Meanwhile, apoptosis was suppressed and nitric oxide release upregulated. The results were significantly different between the LPS group and the control group on the 5th and 9th days. Conclusion: The difference between the results of one group and those of the other suggest that after the 5th LPS injection, multiple low doses of LPS activated splenocytes and restored the number of splenocytes, which maintained and possibly enhanced the regulation of the immune function of the spleen.
RESUMO
BACKGROUND: Rabbit coccidiosis is a major disease caused by various Eimeria species and causes enormous economic losses to the rabbit industry. Coccidia infection has a wide impact on the gut microbiota and intestinal biochemical equilibrium. In the present study, we established a model of Eimeria intestinalis infection in rabbits to evaluate the jejunal microbiota and fecal metabolite profiles. METHODS: Rabbits in the infected group were orally inoculated with 3 × 103 E. intestinalis oocysts. On the eighth day of infection, jejunal contents and feces were collected for 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, respectively. Jejunum tissues were harvested for hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and immunohistochemistry (IHC) staining. RESULTS: Histopathological analysis showed that the whole jejunum was parasitized by E. intestinalis in a range of life cycle stages, and PAS staining showed that E. intestinalis infection caused extensive loss of goblet cells. IHC staining revealed that TNF-α expression was higher in the E. intestinalis infection group. Moreover, both the jejunal microbiota and metabolites significantly altered after E. intestinalis infection. At the genus level, the abundances of Escherichia and Enterococcus significantly increased in the infected group compared with the control group, while those of Oscillospira, Ruminococcus, Bacteroides, Akkermansia, Coprococcus, and Sarcina significantly decreased. In addition, 20 metabolites and two metabolic pathways were altered after E. intestinalis infection, and the major disrupted metabolic pathway was lipid metabolism. CONCLUSIONS: Eimeria intestinalis infection induced intestinal inflammation and destroyed the intestinal homeostasis at the parasitized sites, leading to significant changes in the gut microbiota and subsequent corresponding changes in metabolites.
Assuntos
Coccidiose , Eimeria , Microbioma Gastrointestinal , Animais , Cromatografia Líquida , Coccidiose/veterinária , Eimeria/genética , Fezes , Microbioma Gastrointestinal/genética , Jejuno , RNA Ribossômico 16S/genética , Coelhos , Espectrometria de Massas em TandemRESUMO
Due to imperfections in their immune and digestive systems, weaned piglets are susceptible to invasions of the external environment and diseases, especially bacterial infections, which lead to slow growth, tissue damage, and even the death of piglets. Here, a model of weaned piglets induced by Escherichia coli lipopolysaccharide (LPS) was established to explore the effects of continuous low-dose LPS induction on the mechanism of liver injury. A total of forty-eight healthy 28-day-old weaned piglets (weight = 6.65 ± 1.19 kg) were randomly divided into two groups: the CON group and LPS group. During the experimental period of thirteen days, the LPS group was injected intraperitoneally with LPS (100 µg/kg) once per day, and the CON group was treated with the same volume of 0.9% NaCl solution. On the 1st, 5th, 9th, and 13th days, the serum and liver of the piglets were collected for the determination of serum biochemical indexes, an antioxidant capacity evaluation, and histopathological examinations. In addition, the mRNA expression levels of the TLR4 pathway and inflammatory cytokines were detected. The results showed that the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in the serum increased after LPS induction. The activities of total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) in the serum and liver homogenate of the LPS group were lower than those of the CON group, while the malondialdehyde (MDA) content in the serum and the activities of catalase (CAT) and superoxide dismutase (SOD) in the liver of the LPS group were higher than those in the CON group. At the same time, morphological impairment of the livers occurred, including hepatocyte caryolysis, hepatocyte vacuolization, karyopycnosis, and inflammatory cell infiltration, and the mRNA expression levels of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-10 were upregulated in the livers after LPS induction. The above results were more obvious on the 1st and 5th days of LPS induction, while the trend during the later period was not significant. It was concluded that the oxidative stress and liver injury occurred at the early stage of LPS induction, while the liver damage weakened at the later stage. The weaned piglets probably gradually developed tolerance to the endotoxin after the continuous low-dose induction of LPS.