Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 33(6): 519-523, 2017 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29931901

RESUMO

OBJECTIVE: To observed the effect of sodium hydrosulphide (NaHS), a donor of H2S on the cell viability,the membrane permeability and the expression of P2X7 receptor induced by adenosine triphosphate(ATP) in rat microglia. METHODS: Rat microglia in logarithmic growth phase was randomly divided into 4 groups. In control group, the cells were cultured without ATP treatment. In ATP group, the cells were treatment with ATP after cultured for 24 hours. In NaHS+ATP group, the cells were incubated with NaHS for 30 min before ATP, and NaHS always existed in the reaction system. In KN-62+ATP group, the cells were pretreated with KN-62 for 30 min, the others were as the same as NaHS+ATP group. The cell viability was detected by MTT. Fluorescent dyes YO-PRO-1 was used to observe the membrane permeability. The expression of P2X7 receptor was examined by immunofluorescence staining. RESULTS: ① Compared with control group, the cell viability dropped after treatment with ATP (1、3、5、10 mmol/L) for 3 hours. When pre-incubation with NaHS(200 µmol/L), the cell viability was apparently higher than that of ATP alone group(P<0.01), while 400 µmol/L had no further beneficial.②The YO-PRO-1 fluorescence intensity was obviously elevated by ATP in rat microglia, but this effect was counteracted by NaHS pretreatment (P<0.01). ③ The expression of P2X7 receptor protein was significantly increased after ATP(3 mmol/L) for 3 h. While the expression upregulation of P2X7 receptor protein induced by ATP was significantly counteracted by pretreating with NaHS(200 µmol/L) (P<0.01). CONCLUSIONS: NaHS could reduce the expression of P2X7 receptor, decrease membrane permeability, and increase the cell viability in rat microglia injured by ATP. So the cytoprotection of hydrogen sulfide may be related to the expression and function of P2X7 receptor.


Assuntos
Trifosfato de Adenosina/farmacologia , Microglia/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Sulfetos/farmacologia , Animais , Células Cultivadas , Microglia/metabolismo , Ratos
2.
Neural Regen Res ; 10(6): 932-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26199610

RESUMO

The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

3.
Neurochem Res ; 32(11): 1919-26, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17551830

RESUMO

Brief limb ischemia was reported to protect neurons against injury induced by subsequent cerebral ischemia-reperfusion, and this phenomenon is known as limb ischemic preconditioning (LIP). To explore the role of nitric oxide (NO) in neuroprotection of LIP in rats, we observed changes in the content of nitric oxide (NO) and activity of NO synthase (NOS) in the serum and CA1 hippocampus of rats after transient limb ischemic preconditioning (LIP), and the influence of N(G)-nitro-L-arginine methylester (L-NAME), a NOS inhibitor, on the neuroprotection of LIP against cerebral ischemia-reperfusion injury. Results showed that NO content and NOS activity in serum increased significantly after LIP compared with the sham group. The increase showed a double peak pattern, in which the first one appeared at time 0 (immediate time point) and the second one appeared at 48 h after the LIP (P < 0.01). The NO content and NOS activity in the CA1 hippocampus in LIP group showed similar change pattern with the changes in the serum, except for the first peak of up-regulation of NO content and NOS activity appeared at 6 h after LIP. Pretreatment with L-NAME before LIP blocked the neuroprotection of LIP against subsequent cerebral ischemic insult. The blocking effect of L-NAME was abolished with pretreatment of L-Arg. These findings indicated that NO may be associated with the tolerance of pyramidal cells in the CA1 hippocampus to ischemia induced by LIP in rats.


Assuntos
Isquemia Encefálica/fisiopatologia , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/fisiologia , Animais , Hipocampo/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/sangue , Ratos
4.
Artigo em Chinês | MEDLINE | ID: mdl-21171359

RESUMO

AIM: To explore the role of femoral nerves section (FNS) on the protection of limb ischemic preconditioning (LIP) against cerebral ischemia/reperfusion injuries. METHODS: Model of brain ischemia induced by Four-vessel occlusion was used. LIP was performed by clamping the bilateral femoral arteries for 10 min 3 times in a interval of 10 min. Rats with vertebral arteries permanently occluded were divided into sham group, cerebral ischemic group, FNS + cerebral ischemic group, LIP + cerebral ischemic group, FNS + LIP + cerebral ischemic group. The changes of neural density (ND) in the CA1 hippocampus were observed 7d after the sham operation or brain ischemia under thionin staining. The expression of c-Fos in the CA1 hippocampus was measured 6 h after the sham operation or brain ischemia under immunohistochemistry method. RESULTS: Thionin staining revealed that serious neuronal damage was visualized in the CA1 hippocampus in both cerebral ischemic group and FNS + cerebral ischemic group as compared with sham group. LIP attenuated the neuronal damage of the CA1 subfield induced normally by cerebral ischemia/reperfusion, and ND in LIP + cerebral ischemic group was significantly higher than that in cerebral ischemic group (P < 0.01). But obvious neuronal damage of the CA1 subfield was found in FNS+ LIP + cerebral ischemic group, and ND was significantly decreased as compared with LIP + cerebral ischemic group (P < 0.01). These results suggested that the protection of LIP against cerebral ischemia/reperfusion injuries might be cancelled by preceding section of femoral nerve. It was found that there was almost no c-Fos expression in the CA1 hippocampus in sham group. Changes of c-Fos expression in the CA1 subfield in cerebral ischemic group were similar to that in sham group. But in LIP + cerebral ischemic group, c-Fos expression in the CA1 subfield was markedly increased and the number of positive cells and optical density of c-Fos expression were significantly higher than those in sham and cerebral ischemic group. c-Fos expression in the CA1 subfield was again decreased in FNS + LIP + cerebral ischemic group, and the number of positive cells and optical density of c-Fos expression were significantly lower than those in LIP + cerebral ischemic group. CONCLUSION: Neural pathway participated in the protective effect of LIP on brain, and increased c-Fos expression in the CA1 hippocampus by LIP after cerebral ischemia/reperfusion, might be a part of neural pathway by which LIP induced brain ischemic tolerance.


Assuntos
Isquemia Encefálica/fisiopatologia , Vias Neurais/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Extremidades/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Masculino , Ratos , Ratos Wistar
6.
Neurochem Res ; 31(7): 967-74, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16847593

RESUMO

The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min. Total ERK1/2 proteins and phospho-ERK1/2 in the CA1 hippocampus were assayed with Western immunoblot. Total ERK1/2 proteins did not change in period from 5 min to 5 days of reperfusion after preconditioning stimulus. While the level of phospho-ERK1/2 increased obviously to 223, 237, 300, 385 and 254% of sham level at times of 5 min, 2 h, 1, 3 and 5 days after preconditioning stimulus, respectively (P < 0.01). Administration of L-NAME, an inhibitor of NO synthase, 30 min prior to preconditioning stimulus failed to induce change in total ERK1/2 proteins (P > 0.05). However, phospho-ERK1/2 increased only to 138 and 176% of sham level at 2 h and 3 days after preconditioning stimulus, respectively, when animals were pretreated with L-NAME. The magnitudes of the increase were obviously low compared with those (237 and 385%) in animals untreated with L-NAME at corresponding time points (P < 0.01), which indicated that phosphorylation of ERK1/2 normally induced by preconditioning stimulus was blocked apparently by administration of L-NAME. The results suggested that phosphorylation of ERK1/2, rather than synthesis of ERK1/2 proteins, was promoted in brain ischemic preconditioning, and that the promotion was partly mediated by NO signal pathway.


Assuntos
Adaptação Fisiológica , Isquemia Encefálica/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/fisiologia , Transdução de Sinais , Animais , Apoptose , Masculino , Ratos , Ratos Wistar
7.
Neurosci Res ; 55(1): 65-73, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16530867

RESUMO

To clarify the role of phosphorylated extracellular signal-regulated kinases (pERK1/2) in the neuroprotection of limb ischemic preconditioning (LIP) in rats, we investigated the expression of pERK1/2 using Western blot and flow cytometry in the hippocampus after LIP and the effect of pERK1/2 inhibitor PD 98059 on the neuroprotection of LIP against delayed neuronal death (DND) in the CA1 hippocampus normally induced by severe ischemic insult. It demonstrated that pERK1/2 in the hippocampus increased after LIP. In the CA1 hippocampus, ERK1/2 activation began to increase at 6h and reached peak at 12h after LIP, and decreased to sham level at 5d after LIP. On the other hand, in the CA3/DG, pERK1/2 enhanced at 1d, reached peak at 3d, and lasted to 5d after LIP. Pretreatment with PD 98059 before LIP blocked the neuroprotection of LIP in a dose-dependent manner. These findings supported that the upregulation of pERK1/2 in the CA1 hippocampus contributed to the neuroprotection of LIP against DND normally caused by the brain ischemic insult.


Assuntos
Isquemia Encefálica/fisiopatologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Extremidades/irrigação sanguínea , Precondicionamento Isquêmico , Animais , Western Blotting/métodos , Isquemia Encefálica/enzimologia , Morte Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Citometria de Fluxo/métodos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Hipocampo/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
8.
Artigo em Chinês | MEDLINE | ID: mdl-21186564

RESUMO

AIM: To investigate the effects of the duration of cerebral ischemic preconditioning(CIP) and interval between CIP and the subsequent ischemic insult on the protection of CIP against delayed neuronal death (DND) in the CA1 hippocampus normally induced by brain ischemic insult. METHODS: Four-vessel occlusion cerebral ischemic model of rats (54) was used. The brain of the rats was sectioned and stained with thionin to show DND in the CA1 hippocampus. RESULTS: No DND was found in the hippocampus of the rats subjected to sham operation and CIP, in which 3 min cerebral ischemic preconditioning was performed. Obvious destruction of the CA1 hippocampus was found in brain ischemic insult group, in which histological (HG) was 2-3 in 6 min and 10 min ischemia subgroups and grade 3 in 15 min ischemia subgroup. In CIP + brain ischemic insult group, no obvious neuronal damage was found in 3 min-3d-6 min (CIP for 3 min was followed by a brain ischemic insult for 6 min at an interval of 3 d, the same as the following) and 3 min-3 d-10 min groups, indicating that CIP effectively protected neurons of the CA1 hippocampus against DND normally induced by ischemic insult for 6 or 10 min. However, in 3 min-1 d-10 min and 3 min-3 d-15 min groups, the protective effect of CIP was lower than that in the 3 min-3 d-10 min group. The quantitative analysis of the protective effect of CIP on the CA1 hippocampal neurons showed that there was no significant difference in protecting number and protecting index between 3 min-3 d-6 min and 3 min-3 d-10 min groups (P > 0.05). However, the growth index in 3 min-3 d-10 min group was obvious larger than that in 3 min-3 d-6 min (P < 0.05). CONCLUSION: Although the protective effects of CIP in 3 min-3 d-6 min and 3 min-3 d-10 min groups were similar, the protective effect of CIP in 3 min-3 d-10 min group was sensitively found. Maximal protective potential of CIP could be induced when using the time parameters of 3 min-3 d-10 min to establish the model of global cerebral ischemic tolerance.


Assuntos
Isquemia Encefálica/prevenção & controle , Hipocampo/patologia , Precondicionamento Isquêmico , Neurônios/patologia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/patologia , Morte Celular , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
9.
Sheng Li Xue Bao ; 56(3): 407-12, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15224159

RESUMO

The purpose of this study was to investigate the effects of limb ischemic preconditioning (LIP) on apoptosis of pyramidal neurons in the CA1 hippocampus induced by global cerebral ischemia-reperfusion in rats. Forty-six rats whose bilateral vertebral arteries were occluded permanently were assigned to one of four groups: sham group, limb ischemia group, cerebral ischemia group and LIP group. LIP was performed by occluding the bilateral femoral arteries for 10 min 3 times in an interval of 10 min. Global cerebral ischemia was underwent by occluding the bilateral common carotid arteries for 8 min immediately after LIP. Assays for apoptosis of the hippocampal neurons were biologically and morphologically performed using gel electrophoresis, TUNEL and AO/EB staining. Characteristic DNA ladder was clearly visualized with gel electrophoresis in the hippocampus in cerebral ischemia group, but not in LIP group. The number of TUNEL-positive cells in the CA1 hippocampus was significantly reduced by LIP from 69.8+/-12 (cerebral ischemia group) to 17.8+/-5.8 (P<0.01). AO/EB staining also showed a reduction of apoptosis in LIP group compared with cerebral ischemia group. These results suggest that LIP can inhibit hippocampal neuronal apoptosis induced by cerebral ischemia-reperfusion, which contributes to the protection against the delayed neuronal death induced by cerebral ischemic insult.


Assuntos
Isquemia Encefálica/fisiopatologia , Hipocampo/patologia , Precondicionamento Isquêmico , Extremidade Inferior/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/fisiologia , Precondicionamento Isquêmico/métodos , Masculino , Neurônios/patologia , Células Piramidais/patologia , Ratos , Ratos Wistar
10.
Neurosci Res ; 48(4): 397-404, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041193

RESUMO

Pharmacologically blocking or stimulating studies have showed the crucial role of adenosine receptors in the protective effect of cerebral ischemic preconditioning (CIP). However, little is know about whether the adenosine receptors are up-regulated in the process. In the present study, changes in expression of adenosine receptors in the CA1 hippocampus after a short CIP in a period of 3 min were investigated in rat four-vessel occluding (4VO) brain ischemic model using immunohistochemistry. The experiments were performed on groups of sham, 4 h, 1, 3, and 7 days (n = 6 in each group) after the CIP. The number and immunostaining density of immunoreactive cells for A1 and A2b adenosine receptors in the CA1 hippocampus were significantly increased after the CIP. For A1 adenosine receptor, the increase occurred in CA1 pyramidal neurons. While for A2b adenosine receptor, the increase occurred in the stratum radiatum of the CA1. The immunoreactive cells for A2b receptor showed distinct morphological characteristics of astrocytes. The increases were consistent in time course (1-7 days) with the development of the ischemic tolerance induced by the CIP. It was concluded that up-regulation of adenosine receptors may also play an important role in the protective effect of CIP.


Assuntos
Isquemia Encefálica/metabolismo , Hipocampo/irrigação sanguínea , Receptores Purinérgicos P1/metabolismo , Animais , Astrócitos/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Precondicionamento Isquêmico , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para Cima
11.
Artigo em Chinês | MEDLINE | ID: mdl-21162308

RESUMO

AIM: To explore the effects of limb ischemic preconditioning (LIP) on cerebral ischemia/reperfusion injuries. METHODS: Thirty six wistar rats, of which bilateral vertebral arteries were occluded permanently, were randomly divided into the following 6 groups: control group, cerebral ischemic group, limb ischemic group, LIP 0 d group (cerebral ischemia was given immediately after LIP), LIP 1 d group (cerebral ischemia was given 1 d after LIP) and LIP 2 d group (cerebral ischemia was given 2 d after LIP). Global cerebral ischemia was performed by four vessels occlusion in rats. LIP was performed by occluding the bilateral femoral arteries for 10 min 3 times in a interval of 10 min. The histological grade and pyramidal neuronal density in the CA1 hippocampus were measured to quantitate the degree of hippocampal injury under thionin staining. RESULTS: The histological grade was increased and the pyramidal neuronal density was decreased in the CA1 hippocampus of the cerebral ischemic group (P < 0.01). The damage of the CA1 hippocampus in LIP 0 d group was significantly diminished, which represented by decreased histological grade and increased neuronal density compared with the cerebral ischemic group (P < 0.01). But the CA1 hippocampus still showed obvious injuries in the LIP 1 d and LIP 2 d group. CONCLUSION: LIP performed immediately prior to cerebral ischemia could confer obvious protective effects on CA1 hippocampus against cerebral ischemia/reperfusion injuries. But LIP performed 1 d and 2 d prior to cerebral ischemia could not afford the protection against injuries induced by cerebral ischemia/reperfusion.


Assuntos
Isquemia Encefálica , Hipocampo/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/prevenção & controle , Extremidades/irrigação sanguínea , Ratos , Ratos Wistar , Traumatismo por Reperfusão/prevenção & controle
12.
Sheng Li Xue Bao ; 55(3): 303-10, 2003 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-12817298

RESUMO

To explore the role of metabotropic glutamate receptor 2/3 mGluR 2/3 in the induction of brain ischemic tolerance (BIT), the influences of mGluR2/3 antagonist alpha-methyl-(4-tetrazolyl-phenyl) glycine (MTPG) on the induction of BIT and expression of glial fibrillary acidic protein (GFAP) in the hippocampus were observed using thionin staining and GFAP immunohistochemical staining in a rat brain ischemic model with four-vessel occlusion (4VO). Fifty-four rats, of which bilateral vertebral arteries were occluded permanently by electrocautery, were divided into 5 groups: (1) sham operated group (n=8): the bilateral carotid common arteries (BCCA) were separated, but the blood flow was not blocked; (2) ischemia group (n=8): the blood flow of BCCA was blocked for 8 min; (3) ischemic preconditioning (IP) group (n=8): the blood flow of BCCA was occluded for 3 min as a cerebral ischemic preconditioning (CIP), and then the rats were exposed to an 8-min brain ischemic insult 24 h after the CIP; (4) MTPG+IP group (n=22): MTPG was administered 20 min before the CIP, then the rats were exposed to an 8-min brain ischemia insult 24 h after the CIP. In order to examine dosage dependency in the effect of MTPG, 4 dosages of MTPG (0.4, 0.2, 0.04 and 0.008 mg) were administered; (5) MTPG+ischemia group (n=8): an ischemic insult for 8 min was given 24 h after the administration of MTPG (0.2 mg). MTPG was injected into the right lateral cerebral ventricle. The results obtained are as follows. (1) Ischemic insult for 8 min increased the histological grade (HG) and reduced the neuronal density (ND) significantly, and also increased the expression of GFAP significantly (P<0.05 vs sham-operated group). (2) In the IP group, the above changes were not observed, indicating that CIP could protect pyramidal neurons against the ischemic insult. (3) The protective effects of CIP were blocked by MTPG, as manifested by the significant increase in HG and decrease in ND in the MTPG+IP group (P<0.05 vs sham-operated group). The changes were dose-dependent. (4) No obvious difference in the HG, ND and expression of GFAP was detected between the groups of MTPG+ischemia and ischemia. The above results indicate that MTPG blocks the induction of BIT induced by CIP, suggesting that mGluR2/3 participates in the induction of BIT.


Assuntos
Alanina/análogos & derivados , Hipocampo/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Tetrazóis/farmacologia , Alanina/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia
13.
Sheng Li Xue Bao ; 55(2): 219-24, 2003 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-12715115

RESUMO

To explore the role of NO in the induction of brain ischemic tolerance (BIT) in vivo, the effect of nitric oxide synthase (NOS) inhibitor L-NAME on the induction of BIT induced by cerebral ischemic preconditioning (CIP) was investigated in the hippocampal CA1 subfield in CIP and ischemic insult models established by rat four-vessel occlusion using brain tissue section and thionine staining methods. Fifty-four male Wistar rats were divided into 6 groups: (1) sham-operated group (n=6): bilateral common arteries were separated without occluding the cerebral blood flow; (2) ischemia group (n=6): an ischemic insult for 10 min was given; (3) CIP+ischemia group (n=6): 3-min CIP was preformed 72 h prior to 10-min ischemic insult; (4) L-NAME group (total n=24, n=6 for each subgroup): L-NAME (5 mg/kg, i.p.) was administered 1 h prior to CIP and 1, 12 and 36 h after CIP, respectively. Other procedures were the same as those for the CIP+ischemia group; (5) L-NAME+L-Arg group (n=6): L-NAME (5 mg/kg, i.p.) and L-Arg (300 mg/kg, i.p.) were administered 1 h prior to CIP, other procedures were the same as those for the L-NAME group; (6) L-NAME+ischemia group (n=6): L-NAME (5 mg/kg, i.p.) was administered 72 h before the 10-min ischemic insult. The results showed that (1)10-min ischemic insult resulted in an increase in the histological grade (indicating a more serious tissue injury) and a decrease in pyramidal neuronal density (P<0.01); (2) the histological grade and neuronal density in hippocampal CA1 in the CIP+ischemia group were similar to those in the sham-operated group (P>0.05); (3) in the L-NAME group, administration of L-NAME brought about an increase in the histological grade and a decrease in neuronal density (P<0.01), suggesting that L-NAME blocked the protection of CIP; (4) the neuronal damage in L-NAME+L-Arg group was slighter than that in the L-NAME group, but still more serious than that in the CIP+ischemia group, suggesting that L-Arg partly reversed the blocking effect of L-NAME; (5) the morphological representations in L-NAME+ischemia group were basically similar to those in the ischemia group. The results mentioned above indicate that NO is involved in the induction of BIT in vivo. The blocking effect of L-NAME administered at 36 h after CIP was obviously weaker than the effects of L-NAME administered 1 h prior to CIP, and 1 or 12 h after CIP. It is suggested that NO is involved in the induction of BIT at an early stage and that the involvement might take place via activating cascades of the events.


Assuntos
Isquemia Encefálica/fisiopatologia , Precondicionamento Isquêmico/métodos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/fisiologia , Animais , Isquemia Encefálica/prevenção & controle , Inibidores Enzimáticos/farmacologia , Hipocampo/fisiologia , Masculino , Ratos , Ratos Wistar
14.
Artigo em Chinês | MEDLINE | ID: mdl-21207849

RESUMO

AIM: To explore roles of metabotropic glutamate receptor1/5 (mGluR1/5) in the induction of brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP), influences of mGluR1/5 ligand (s)-4-carboxy-3-hydroxy- phenylglycine ((s)-4C3HPG) on the induction of BIT and expression of glial fibrillary acidic protein (GFAP) in the hippocampus were observed. METHODS: Thionin staining and GFAP immunohistochemistry staining in rat 4 vessel occlusion (4VO) brain ischemic model was used. Thirty-six rats, of which bilateral vertebral arteries were occluded permanently by electrocautery, were divided into the following 4 groups: sham group; ischemic insult group, BIT group and (s)-4C3HPG group. According to dosages of (s)-4C3HPG used, the (s)-4C3HPG group, was further divided into 0.2 mg, 0.04 mg and 0.008 mg subgroups. All the rats were killed 7 d after the operation or the final ischemic treatment. RESULTS: (1) The ischemic insult for 8 min increased the histological grade (HG), decreased the pyramidal neuronal density (ND) and increased the expression of GFAP significantly (P < 0.05 vs sham) (2) The CIP prevented the above injury changes in the BIT group. (3) The protective effects of the CIP were blocked by (s)-4C3HFG, as manifested by significant increases in HG and decreases in ND in the (s)-4C3HPG group (P < 0.05 vs sham and BIT groups). The changes were proportional with the dosages of (s)-4C3HPG used. CONCLUSION: (s)-4C3HPG could block the induction of BIT induced by CIP, suggested that mGluR1/5 participate in the induction of BIT.


Assuntos
Isquemia Encefálica/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Receptores de Glutamato Metabotrópico , Animais , Isquemia Encefálica/fisiopatologia , Eletroencefalografia , Glicina/análogos & derivados , Glicina/farmacologia , Precondicionamento Isquêmico , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA