Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Imeta ; 3(4): e198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135685

RESUMO

The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.

2.
Food Funct ; 15(15): 7733-7756, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38984439

RESUMO

Dietary fiber (DF) cannot be digested and absorbed by the digestive tract, nor can it provide the energy needed to be burned for metabolic activities. Therefore, from the 1950s to the 1980s, DF received little attention in nutrition studies. With in-depth research and developments in global nutrition, people have gradually paid attention to the fact that DF occupies an essential position in the structure of nutrition, and it can ensure the healthy development of human beings. As early as 390 B.C., the ancient Greek physician Hippocrates proposed, "Let your food be your medicine, and your medicine be your food". This concept has been more systematically validated in modern scientific research, with numerous epidemiological studies showing that the dietary intake of DF-rich foods such as whole grains, root vegetables, legumes, and fruits has the potential to regulate the balance of the gut microbiota and thereby prevent diseases. However, the crosstalk between different types of DF and the gut microbiota is quite complex, and the effects on the organism vary. In this paper, we discuss research on DF and the gut microbiota and related diseases, aiming to understand the relationship between all three better and provide a reference basis for the risk reduction of related diseases.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Humanos , Fibras na Dieta/análise , Dieta
3.
Microbiol Resour Announc ; : e0008724, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082814

RESUMO

We report the isolation and draft genome sequence of Ruoffia tabacinasalis, a novel member of the bovine nasal microbiota. The genome, which is estimated to be 90.5% complete, is composed of one contig comprising 2,363,349 bp with a GC content of 36.66%.

4.
Hepatol Commun ; 8(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082957

RESUMO

BACKGROUND: Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS: BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS: We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS: Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.


Assuntos
Ácidos e Sais Biliares , Resina de Colestiramina , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Resina de Colestiramina/farmacologia , Resina de Colestiramina/uso terapêutico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Ácidos e Sais Biliares/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças
5.
J Hazard Mater ; 474: 134601, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823098

RESUMO

Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.


Assuntos
Histona-Lisina N-Metiltransferase , Necroptose , Tricotecenos , Tricotecenos/toxicidade , Animais , Necroptose/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Suínos , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia
6.
Imeta ; 3(1): e171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868505

RESUMO

In this study, we have successfully constructed a comprehensive database of metagenome-assembled genomes (MAGs) pertaining to the gut microbiota of the giant panda. Through our analysis, we have identified significant reservoirs of antibiotic resistance genes (ARGs), namely Escherichia coli, Citrobacter portucalensis, and Klebsiella pneumoniae. Furthermore, we have elucidated the primary contributors to ARGs, including Streptococcus alactolyticus and Clostridium SGBP116, in both captive and wild pandas. Additionally, our findings have demonstrated a higher prevalence of ARGs in the metagenome, with notable expression of the RPOB2 gene in S. alactolyticus. Crucially, 1217 ARGs shared homology with human gut ARGs, underscoring the interaction relationship between pandas and human microbiomes. These findings are instrumental in understanding the antibiotic resistance landscape in the giant panda's gut, providing a framework for developing strategies to combat antibiotic resistance and safeguard the health of this endangered species.

7.
Imeta ; 3(1): e160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868506

RESUMO

Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.

10.
Nutrients ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892647

RESUMO

During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1ß and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.


Assuntos
Butiratos , Fibras na Dieta , Transdução de Sinais , Desmame , Animais , Ração Animal , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Suínos , Receptor 4 Toll-Like/metabolismo
11.
Nutr Res ; 127: 13-26, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820937

RESUMO

Wheat germ (WG), a by-product of flour milling, is rich in bioactive substances that may help improve health complications associated with increased adiposity. This study investigated the effects of WG on gut health, metabolic, and inflammatory markers in adults classified as overweight. We hypothesized that WG, because of its many bioactive components, would improve gut health and metabolic, and inflammatory markers in overweight adults. Forty adults (18-45 years old) and with a body mass index between 25 and 30 kg/m2 participated in this single-blinded randomized controlled pilot study. Participants consumed the study supplements containing 30 g of either cornmeal (control, CL) or WG daily for 4 weeks. Primary outcome variables were gut health markers including gut microbiota, gut integrity markers, and fecal short-chain fatty acids, whereas secondary outcome variables included metabolic and inflammatory parameters assessed at baseline and at the end of supplementation. Thirty-nine participants (n = 19 and 20 for CL and WG group, respectively) completed the study. The genus Faecalibacterium was significantly higher in the WG group compared to CL post-supplementation but no significant changes in other gut health markers, short-chain fatty acids, inflammatory markers, and lipid profiles were observed. Compared with baseline, WG improved markers of glucose homeostasis including insulin (P = .02), homeostatic model assessment of insulin resistance (P = .03), glycated hemoglobin (P = .07), and the pro-inflammatory adipokine, resistin (P = .04). However, these parameters after intervention were not different with control. Our findings suggest that WG supplementation have modest effects on gut health but may provide an economical option for individuals to improve glycemic control.


Assuntos
Biomarcadores , Glicemia , Suplementos Nutricionais , Microbioma Gastrointestinal , Homeostase , Sobrepeso , Triticum , Humanos , Adulto , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Adulto Jovem , Glicemia/metabolismo , Método Simples-Cego , Adolescente , Fezes/microbiologia , Fezes/química , Ácidos Graxos Voláteis , Índice de Massa Corporal , Resistência à Insulina
12.
Appl Microbiol Biotechnol ; 108(1): 314, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683435

RESUMO

The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.


Assuntos
Ração Animal , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Animais , Fibras na Dieta/metabolismo , Suínos , Microbioma Gastrointestinal/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos Voláteis/metabolismo
13.
Foods ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472914

RESUMO

Oxidative stress occurs in the process of egg storage. Antioxidants as feed additives can enhance egg quality and extend the shelf life of eggs. Selenium-enriched Cardamine violifolia (SEC) has strongly antioxidant properties. The objective of this study was to assess the effects of dietary supplementation with SEC on egg quality and the yolk antioxidant capacity of eggs stored at 4 °C and 25 °C. Four hundred fifty 65-week-old, Roman hens that were similar in laying rate (90.79 ± 1.69%) and body weight (2.19 ± 0.23 kg) were divided into 5 groups. The birds were fed diets supplemented with 0 mg/kg selenium (Se) (CON), 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se for selenium-enriched Cardamine violifolia (SEC) or 0.3 mg/kg Se from Se-enriched Cardamine violifolia and 0.3 mg/kg Se from Se-enriched yeast (SEC + SEY) for 8 weeks. The eggs were collected on the 8th week and were analyzed for egg quality and oxidative stability of yolk during storage at 4 °C or 25 °C for 0, 2, 4, or 6 weeks. Dietary SEC and SEC + SEY supplementation increased the Haugh unit (HU) and albumen foam stability in eggs stored at 4 °C and 25 °C (p < 0.05). SS and SEC supplementation increased the yolk index in eggs stored at 25 °C (p < 0.05). SEC or SEC + SEY slowed down an increase in albumen pH and gel firmness in eggs stored at 4 °C and 25 °C (p < 0.05). Moreover, SEC or SEC + SEY alleviated the increase in malonaldehyde (MDA), and the decrease in total antioxidant capacity (T-AOC) level and total superoxide dismutase (T-SOD) activity in yolks stored at 4 °C and 25 °C (p < 0.05). These results indicate that SEC mitigated egg quality loss and improved the antioxidant capacity of yolks during storage. SEC supplementation would be advantageous to extend the shelf life of eggs.

14.
J Anim Sci Biotechnol ; 15(1): 12, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273357

RESUMO

BACKGROUND: Stocker cattle diet and management influence beef cattle performance during the finishing stage, but knowledge of the dynamics of the rumen microbiome associated with the host are lacking. A longitudinal study was conducted to determine how the feeding strategy from the stocker to the finishing stages of production affects the temporal dynamics of rumen microbiota. During the stocker phase, either dry hay or wheat pasture were provided, and three levels of monensin were administrated. All calves were then transported to a feedlot and received similar finishing diets with or without monensin. Rumen microbial samples were collected on d 0, 28, 85 during the stocker stage (S0, S28 and S85) and d 0, 14, 28, 56, 30 d before slaughter and the end of the trial during the finishing stage (F0, F14, F28, F56, Pre-Ba, and Final). The V4 region of the bacterial 16S rRNA gene of 263 rumen samples was sequenced. RESULTS: Higher alpha diversity, including the number of observed bacterial features and the Shannon index, was observed in the stocker phase compared to the finishing phase. The bacterial amplicon sequence variants (ASVs) differentiating different sampling time points were identified. Dietary treatments during the stocker stage temporally impact the dynamics of rumen microbiota. For example, shared bacteria, including Bacteroidales (ASV19) and Streptococcus infantarius (ASV94), were significantly higher in hay rumen on S28, S85, and F0, while Bacteroidaceae (ASV11) and Limivicinus (ASV15) were more abundant in wheat. Monensin affected rumen microbial composition at a specific time. Transportation to feedlot significantly influenced microbiome structure and diversity in hay-fed calves. Bacterial taxa associated with body weight were classified, and core microbiotas interacted with each other during the trial. CONCLUSIONS: In summary, the temporal dynamics of the rumen microbiome in cattle at the stocker and finishing stage are influenced by multiple factors of the feeding strategy. Diet at the stocker phase may temporarily affect the microbial composition during this stage. Modulating the rumen microbiome in the steers at the stocker stage affects the microbial interactions and performance in the finishing stage.

16.
Front Immunol ; 14: 1289356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908362

RESUMO

Background: The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods: Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results: After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion: Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.


Assuntos
Anti-Infecciosos , Hepatite Alcoólica , Hepatopatias Alcoólicas , Microbiota , Camundongos , Animais , Hepatite Alcoólica/prevenção & controle , Simbiose , Interleucinas , Hepatopatias Alcoólicas/prevenção & controle , Etanol , Inflamação , Bactérias , Interleucina 22
17.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894853

RESUMO

Quercetin (Que) is a flavonol compound found in plants, which has a variety of biological activities. Necroptosis, a special form of programmed cell death, plays a vital role in the development of many gastrointestinal diseases. This study aimed to explore whether Que could attenuate the intestinal injury and barrier dysfunction of piglets after deoxynivalenol (DON) exposure through modulating the necroptosis signaling pathway. Firstly, twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors, including Que (basal diet or diet supplemented with 100 mg/kg Que) and DON exposure (control feed or feed contaminated with 4 mg/kg DON). After feeding for 21 d, piglets were killed for samples. Next, the intestinal porcine epithelial cell line (IPEC-1) was pretreated with or without Que (10 µmol/mL) in the presence or absence of a DON challenge (0.5 µg/mL). Dietary Que increased the body weight, average daily gain, and average daily feed intake (p < 0.05) through the trial. Que supplementation improved the villus height, and enhanced the intestinal barrier function (p < 0.05) indicated by the higher protein expression of occludin and claudin-1 (p < 0.05) in the jejunum of the weaned piglets after DON exposure. Dietary Que also down-regulated the protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated RIP1 (p-RIP1), p-RIP3, total mixed lineage kinase domain-like protein (t-MLKL), and p-MLKL (p < 0.05) in piglets after DON exposure. Moreover, Que pretreatment increased the cell viability and decreased the lactate dehydrogenase (LDH) activity (p < 0.05) in the supernatant of IPEC-1 cells after DON challenge. Que treatment also improved the epithelial barrier function indicated by a higher transepithelial electrical resistance (TEER) (p < 0.001), lower fluorescein isothiocyanate-labeled dextran (FD4) flux (p < 0.001), and better distribution of occludin and claudin-1 (p < 0.05) after DON challenge. Additionally, pretreatment with Que also inhibited the protein abundance of t-RIP1, p-RIP1, t-RIP3, p-RIP3, t-MLKL, and p-MLKL (p < 0.05) in IPEC-1 cells after DON challenge. In general, our data suggest that Que can ameliorate DON-induced intestinal injury and barrier dysfunction associated with suppressing the necroptosis signaling pathway.


Assuntos
Necroptose , Quercetina , Suínos , Animais , Quercetina/farmacologia , Ocludina , Claudina-1 , Transdução de Sinais
18.
Front Cell Infect Microbiol ; 13: 1223090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743862

RESUMO

Background: Bovine respiratory disease (BRD) is the most devastating disease affecting beef and dairy cattle producers in North America. An emerging area of interest is the respiratory microbiome's relationship with BRD. However, results regarding the effect of BRD on respiratory microbiome diversity are conflicting. Results: To examine the effect of BRD on the alpha diversity of the respiratory microbiome, a meta-analysis analyzing the relationship between the standardized mean difference (SMD) of three alpha diversity metrics (Shannon's Diversity Index (Shannon), Chao1, and Observed features (OTUs, ASVs, species, and reads) and BRD was conducted. Our multi-level model found no difference in Chao1 and Observed features SMDs between calves with BRD and controls. The Shannon SMD was significantly greater in controls compared to that in calves with BRD. Furthermore, we re-analyzed 16S amplicon sequencing data from four previously published datasets to investigate BRD's effect on individual taxa abundances. Additionally, based on Bray Curtis and Jaccard distances, health status, sampling location, and dataset were all significant sources of variation. Using a consensus approach based on RandomForest, DESeq2, and ANCOM-BC2, we identified three differentially abundant amplicon sequence variants (ASVs) within the nasal cavity, ASV5_Mycoplasma, ASV19_Corynebacterium, and ASV37_Ruminococcaceae. However, no ASVs were differentially abundant in the other sampling locations. Moreover, based on SECOM analysis, ASV37_Ruminococcaceae had a negative relationship with ASV1_Mycoplasma_hyorhinis, ASV5_Mycoplasma, and ASV4_Mannheimia. ASV19_Corynebacterium had negative relationships with ASV1_Mycoplasma_hyorhinis, ASV4_Mannheimia, ASV54_Mycoplasma, ASV7_Mycoplasma, and ASV8_Pasteurella. Conclusions: Our results confirm a relationship between bovine respiratory disease and respiratory microbiome diversity and composition, which provide additional insight into microbial community dynamics during BRD development. Furthermore, as sampling location and sample processing (dataset) can also affect results, consideration should be taken when comparing results across studies.


Assuntos
Doenças dos Bovinos , Microbiota , Mycoplasma hyorhinis , Doenças Respiratórias , Bovinos , Animais , Clostridiales
19.
Front Vet Sci ; 10: 1224647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662988

RESUMO

A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0-16, grower d16-31, finisher d31-42, and withdrawal d42-52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16-31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET.

20.
Microbiome ; 11(1): 180, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580828

RESUMO

BACKGROUND: The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS: In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS: The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Camundongos , Microbioma Gastrointestinal/genética , Fezes/química , Metagenoma , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA