Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; : e2401258, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794878

RESUMO

Manganese oxide-based aqueous zinc-ion batteries (ZIBs) are attractive energy storage devices, owing to their good safety, low cost, and ecofriendly features. However, various critical issues, including poor conductivity, sluggish reaction kinetics, and unstable structure still restrict their further development. Oxygen defect engineering is an effective strategy to improve the electrochemical performance of manganese oxides, but challenging in the accurate regulation of oxygen defects. In this work, an effective and controllable defect engineering strategy-controllable electrochemical lithium-ion intercalation - is proposed to tackle this issue. The incorporation of lithium ions and oxygen defects can promote the conductivity, lattice spacing, and structural stability of Mn2O3 (MO), thus improving its capacity (232.7 mAh g-1), rate performance, and long-term cycling stability (99.0% capacity retention after 3000 cycles). Interestingly, the optimal ratio of intercalated lithium-ion varies at different temperature or mass-loading of MO, which provides the possibility to customize diverse ZIBs to meet different application conditions. In addition, the fabricated ZIBs present good flexibility, superior safety, and admirable adaptability under extreme temperatures (-20-100 °C). This work provides an inspiration on the structural customization of metal oxide nanomaterials for diverse ZIBs, and sheds light on the construction of future portable electronics.

2.
Small ; : e2309803, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659183

RESUMO

Electromagnetic interference (EMI) shielding and infrared (IR) stealth materials have attracted increasing attention owing to the rapid development of modern communication and military surveillance technologies. However, to realize excellent EMI shielding and IR stealth performance simultaneously remains a great challenge. Herein, a facile strategy is demonstrated to prepare high-efficiency EMI shielding and IR stealth materials of sandwich-structured MXene-based thin foam composites (M-W-M) via filtration and hot-pressing. In this composite, the conductive Ti3C2Tx MXene/cellulose nanofiber (MXene/CNF) film serves as the outer layer, which reflects electromagnetic waves and reduces the IR emissivity. Meanwhile, the middle layer is composed of a porous waste polyurethane foam (WPUF), which not only improves thermal insulation capacity but also extends electromagnetic wave propagation paths. Owing to the unique sandwich structure of "film-foam-film", the M-W-M composite exhibits a high EMI shielding effectiveness of 83.37 dB, and in the meantime extremely low emissivity (22.17%) in the wavelength range of 7-14 µm and thermal conductivity (0.19 W m-1 K-1), giving rise to impressive IR stealth performance at various surrounding temperatures. Remarkably, the M-W-M composite also shows excellent Joule heating properties, capable of maintaining the IR stealth function during Joule heating.

3.
J Colloid Interface Sci ; 652(Pt B): 1925-1936, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690300

RESUMO

Accurate detection and differentiation of multiple anions is still a difficult problem due to their wide variety, structural similarity, and mutual interference. Hence, four rare-earth metal-organic frameworks (RE-MOFs) including Dy-MOFs, Er-MOFs, Tb-MOFs and Y-MOFs are successfully prepared by using TCPP as the ligand and rare-earth ions as the metal center via coordination chelation. It is found that 7 anions can light up their fluorescence. Thus, a high-resolution sensing array based on RE-MOFs nanoprobes is employed to differentiate these anions from intricate analytes in real-time scenarios. The distinctive host-guest response promotes the RE-MOFs nanoprobes to selectively extract the target anions from the complex samples. By taking advantage of the cross-response between RE-MOFs nanoprobes and anions, it allows to create an array for detecting target analytes using pattern recognition. Additionally, RE-MOFs nanoprobes also facilitate the quantitative analysis of these anions (PO43-, H2PO4-, HPO42-, F-, S2-, CO32- and C2O42-). More importantly, the exceptional effectiveness of this method has been demonstrated through various successful applications, including quality monitoring of 8 toothpaste brands, intracellular phosphate imaging, and blood phosphorus detection in mice with vascular calcification. These findings provide robust evidence for the efficacy and reliability of the RE-MOFs nanoprobes array for anion recognition.

4.
Int J Biol Macromol ; 234: 123593, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773862

RESUMO

Lignocellulosic biomass is the most abundant natural polymer on Earth, but the efficient fractionation and refinery of all its components remain challenging. Acidic deep eutectic solvents refining is a promising method, while it is likely to cause lignin condensation and carbohydrates degradation, especially at server operation conditions. Here we propose the use of acidic deep eutectic solvent (DES), choline chloride/p-toluenesulfonic acid assisted mechanochemical pretreatment (DM) for efficient lignocellulose fractionation at mild condition. Four representative lignocellulose, wheat straw, moso bamboo, poplar wood and pine wood were selected at varied milling time (3, 6 h) to assess the fractionation ability of this strategy. This DM pretreatment demonstrated a rather high cellulose retentions (∼90 %) and extent of delignification for wheat straw and bamboo biomass, which corresponds to a high extent of enzymatic hydrolysis (∼75.5 %) for sugar platform pursuing. The extracted lignin showed rather high content of ß-O-4' leakages due to the swelling effect of deep eutectic solvent and mild operation conditions. This work provided a promising strategy to fractionate lignocellulose using deep eutectic solvents with the goal of simultaneous cellulose hydrolysis and reactive lignin obtaining that is usually difficult to realize using traditional chemical fractionation approach.


Assuntos
Solventes Eutéticos Profundos , Lignina , Lignina/química , Solventes/química , Biomassa , Temperatura , Celulose , Hidrólise
5.
Chem Commun (Camb) ; 59(12): 1661-1664, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688849

RESUMO

A flexible zinc ion micro-battery with ultra-high surface capacity (10.1 mA h cm-2) and energy density (8.1 mW h cm-2), as well as good flexibility, is fabricated based on the co-doping effect of V2O5 through an improved 3D printing technology, and is further integrated with flexible solar cells for self-powered wearable electronics.

6.
Carbohydr Polym ; 303: 120455, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657843

RESUMO

In this work, a unique three-dimensional nanofibrous foam of cellulose@g-C3N4@Cu2O was prepared via electrospinning followed by a foaming process. A cellulose solution in DMAc/LiCl containing g-C3N4 and CuSO4 was applied for electrospinning, while aqueous alkali was used as the coagulation bath. The solidification of electrospun cellulose/g-C3N4 nanofibers would be accompanied with in-situ formation of Cu(OH)2 nanoparticles. Interestingly, the hydrogen gas (H2) generated from NaBH4 could transform the two-dimensional membrane into a three-dimensional foam, leading to the increased specific surface area and porosity of the material. Meanwhile, the Cu(OH)2 nanoparticles attached on the electrospun nanofibers were reduced to Cu2O to form a p-n heterostructure between Cu2O and g-C3N4. The as-prepared cellulose@g-C3N4@Cu2O foam exhibited a high degradation efficiency (99.5 %) for the dye of Congo Red under visible light radiation. And ·O2- was discovered to be the dominant reactive species responsive for dye degradation. Moreover, the cellulose@g-C3N4@Cu2O could maintain its initial degradation efficiency even after seven cycles of reuse, suggesting the excellent stability and cycling performance.

7.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500775

RESUMO

In this work, a cellulose nanofibrils (CNFs)/few-layer graphene (FLG) hybrid is mechanically stripped from bamboo pulp and expanded graphene (EG) using a grinder. This strategy is scalable and environmentally friendly for high-efficiency exfoliation and dispersion of graphene in an aqueous medium. The in situ-generated CNFs play a key role in this process, acting as a "green" dispersant. Next, the obtained CNFs-FLG is used as a functional filler in a polyoxyethylene (PEO) matrix. When the composition of CNFs-FLG is 50 wt.%, the resultant PEO/CNFs-FLG nanocomposite film exhibits a Young's modulus of 1.8 GPa and a tensile strength of 25.7 MPa, showing 480% and 260% enhancement as compared to those of the pure PEO film, respectively. Remarkably, the incorporation of CNFs-FLG also provides the nanocomposite films with a stunning electrical conductivity (72.6 S/m). These attractive features make PEO/CNFs-FLG nanocomposite films a promising candidate for future electronic devices.

8.
Polymers (Basel) ; 13(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960889

RESUMO

A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. In SEM images, the aerogel was highly porous with abundant interconnected pores, and its carbon-fiber skeleton was evenly covered by iron particles. Such structures greatly promoted both adsorption and redox reaction of Cr(VI) and endowed Fe/CA with a superb adsorption capacity of Cr(VI) (182 mg/g) with a fast adsorption rate (only 8 min to reach adsorption equilibrium), which outperformed many other adsorbents. Furthermore, the adsorption kinetics and isotherms were also investigated. The experiment data could be much better fitted by the pseudo-second-order kinetics model with a high correlating coefficient, suggesting that the Cr(VI) adsorption of Fe/CA was a chemical adsorption process. Meanwhile, the Langmuir model was found to better describe the isotherm curves, which implied the possible monolayer adsorption mechanism. It is noteworthy that the aerogel adsorbent as a bulk material could be easily separated from the water after adsorption, showing high potential in real-world water treatment.

9.
ACS Nano ; 15(6): 10597-10608, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34037383

RESUMO

The booming market of portable and wearable electronics has aroused the requests for advanced flexible self-powered energy systems featuring both excellent performance and high safety. Herein, we report a safe, flexible, self-powered wristband system by integrating high-performance zinc-ion batteries (ZIBs) with perovskite solar cells (PSCs). ZIBs were first fabricated on the basis of a defective MnO2-x nanosheet-grown carbon cloth (MnO2-x@CC), which was obtained via the simple lithium treatment of the MnO2 nanosheets to slightly expand the interlayer spacing and generate rich oxygen vacancies. When used as a ZIB cathode, the MnO2-x@CC with a ultrahigh mass loading (up to 25.5 mg cm-2) exhibits a much enhanced specific capacity (3.63 mAh cm-2 at current density of 3.93 mA cm-2), rate performance, and long cycle stability (no obvious degradation after 5000 cycles) than those of the MnO2@CC. Importantly, the MnO2-x@CC-based quasi-solid-state ZIB not only achieves excellent flexibility and an ultrahigh energy density of 5.11 mWh cm-2 (59.42 mWh cm-3) but also presents a high safety under a wide temperature range and various severe conditions. More importantly, the flexible ZIBs can be integrated with flexible PSCs to construct a safe, self-powered wristband, which is able to harvest light energy and power a commercial smart bracelet. This work sheds light on the development of high-performance ZIB cathodes and thus offers a good strategy to construct wearable self-powered energy systems for wearable electronics.

10.
Am J Transplant ; 21(10): 3268-3279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784431

RESUMO

Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.


Assuntos
Transplante de Coração , Receptor 3 Toll-Like , Animais , Apoptose , Morte Celular , Transplante de Coração/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doadores de Tecidos , Receptor 3 Toll-Like/metabolismo
11.
Small ; 17(14): e2006866, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705603

RESUMO

Multinary layered 2D nanomaterials can exhibit distinct physicochemical properties and innovative applications as compared to binary 2D nanomaterials due to their unique crystal structures. However, it still remains a challenge for the high-yield preparation of high-quality multinary 2D nanosheets. Here, the high-yield and large-scale production of two quaternary metal thiophosphate nanosheets are reported, i.e., Ni3 Cr2 P2 S9 and Ni3 Cr2 P2 Se9 , via the liquid exfoliation of their layered bulk crystals. The exfoliated single-crystalline Ni3 Cr2 P2 S9 nanosheets, with a lateral size ranging from a few hundred nanometers to a few micrometers and thickness of 1.4 ± 0.2 nm, can be easily used to prepare flexible thin films via a simple vacuum filtration process. As a proof-of-concept application, the fabricated thin film is used as a supercapacitor electrode with good specific capacitance. These high-yield, large-scale, solution-processable quaternary metal thiophosphate nanosheets could also be promising in other applications like biosensors, cancer therapies, and flexible electronics.


Assuntos
Nanoestruturas , Capacitância Elétrica , Eletrodos , Metais
12.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477531

RESUMO

Carbon aerogels (CA) derived from bamboo cellulose fibers were coupled with TiO2 to form CA/TiO2 hybrids, which exhibited extraordinary performance on the photo-catalytic degradation of methylene blue (MB). The structure and morphology of CA/TiO2 were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The CA displayed a highly porous and interconnected three-dimensional framework structure, while introducing the catalytic active sites of TiO2 onto the aerogel scaffold could remarkably enhance its photo-catalytic activity. The adsorption and photo-catalytic degradation of MB by the CA/TiO2 hybrid were investigated. The maximum adsorption capacity of CA/TiO2 for MB was 18.5 mg/g, which outperformed many similar materials reported in the literature. In addition, compared with other photo-catalysts, the present CA/TiO2 demonstrated superior photo-catalytic performance. Almost 85% of MB in 50 mL solution with a MB concentration of 10 mg/L could be effectively degraded by 15 mg CA/TiO2 in 300 min.

13.
Adv Mater ; 33(1): e2006444, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33225539

RESUMO

Nutrients are essential for the healthy development and proper maintenance of body functions in humans. For adequate nourishment, it is important to keep track of nutrients level in the body, apart from consuming sufficient nutrition that is in line with dietary guidelines. Sweat, which contains rich chemical information, is an attractive biofluid for routine non-invasive assessment of nutrient levels. Herein, a wearable sensor that can selectively measure vitamin C concentration in biofluids, including sweat, urine, and blood is developed. Detection through an electrochemical sensor modified with Au nanostructures, LiClO4 -doped conductive polymer, and an enzymes-immobilized membrane is utilized to achieve wide detection linearity, high selectivity, and long-term stability. The sensor allows monitoring of temporal changes in vitamin C levels. The effect of vitamin C intake on the sweat and urine profile is explored by monitoring concentration changes upon consuming different amounts of vitamin C. A longitudinal study of sweat's and urine's vitamin C correlation with blood is performed on two individuals. The results suggest that sweat and urine analysis can be a promising method to routinely monitor nutrition through the sweat sensor and that this sensor can facilitate applications such as nutritional screening and dietary intervention.


Assuntos
Monitorização Fisiológica/instrumentação , Avaliação Nutricional , Dispositivos Eletrônicos Vestíveis , Ácido Ascórbico/análise , Humanos , Suor/química
14.
Carbohydr Polym ; 250: 116872, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049820

RESUMO

While of enormous scientific interests, the super-wetting materials capable of one-step separation of oils and dyes from water are rare on the market. Besides, the disposal of the used materials themselves is still a challenge, mainly ascribed to their non-biodegradation. Herein, we report an all-cellulose composite membrane that can simultaneously remove oil and dye from water. The membrane was fabricated via a simple dip-coating process during which the filter paper was coated by a cellulose hydrogel layer. This cellulose hydrogel coating was discovered to play an essential role in the separation of oil/water emulsion. Meanwhile, the incorporation of citric acid remarkably improved the mechanical and adsorption properties of the membrane as it served as both the crosslinking agent and the active species for methylene blue adsorption. This work demonstrated a new strategy on the development of fully biodegradable materials for both high-efficiency oil/water separation and dye removal.

15.
Small ; 16(43): e2004173, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006243

RESUMO

Transition metal dichalcogenide (TMD) nanomaterials, specially MoS2 , are proven to be appealing nanoagents for photothermal cancer therapies. However, the impact of the crystal phase of TMDs on their performance in photoacoustic imaging (PAI) and photothermal therapy (PTT) remains unclear. Herein, the preparation of ultrasmall single-layer MoS2 nanodots with different phases (1T and 2H phase) is reported to explore their phase-dependent performances as nanoagents for PAI guided PTT in the second near-infrared (NIR-II) window. Significantly, the 1T-MoS2 nanodots give a much higher extinction coefficient (25.6 L g-1  cm-1 ) at 1064 nm and subsequent photothermal power conversion efficiency (PCE: 43.3%) than that of the 2H-MoS2 nanodots (extinction coefficient: 5.3 L g-1  cm-1 , PCE: 21.3%). Moreover, the 1T-MoS2 nanodots also give strong PAI signals as compared to negligible signals of 2H-MoS2 nanodots in the NIR-II window. After modification with polyvinylpyrrolidone, the 1T-MoS2 nanodots can be used as a highly efficient agent for PAI guided PTT to effectively ablate cancer cells in vitro and tumors in vivo under 1064 nm laser irradiation. This work proves that the crystal phase plays a key role in determining the performance of nanoagents based on TMD nanomaterials for PAI guided PTT.


Assuntos
Técnicas Fotoacústicas , Fototerapia , Diagnóstico por Imagem , Molibdênio , Terapia Fototérmica
16.
Carbohydr Polym ; 245: 116554, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718643

RESUMO

Nanocellulose-derived carbon is a promising material in energy storage because of its sustainability, low environmental impact, and large specific surface area. Herein, the skin secretion of Andrias davidianus (SSAD) is applied for the first time as the bio-nitrogen source to dope carbon aerogels from nanocellulose. Cellulose nanocrystal (CNC) is discovered to be very effective to address the dispersion problem of SSAD in water. After being homogeneously mixed with cellulose nanofiber (CNF), honeycomb-structured nanofibrous carbon aerogels are obtained via unidirectional freeze-drying of the SSAD/CNC/CNF mixture followed by high-temperature carbonization. Impressively, unlike those fragile carbon aerogels in many early works, the present ones exhibit outstanding elasticity in repeated compression and release tests. Moreover, a symmetric binder-free supercapacitor is assembled from the carbon aerogels, which exhibits improved electrochemical capacitive properties and cycling stability. And even after 500 compression and release cycles, the supercapacitor can still maintain high capacitive performance, indicating its superiorities in durability and electrochemical stability.


Assuntos
Secreções Corporais/química , Carbono/química , Géis/química , Nanofibras/química , Nanopartículas/química , Pele/metabolismo , Urodelos/fisiologia , Animais , Celulose/química , Elasticidade , Eletrodos , Temperatura Alta , Nitrogênio/química , Porosidade , Água/química
17.
Carbohydr Polym ; 231: 115736, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888822

RESUMO

A recently developed three-dimensional (3D) gel-printing technology, namely continuous liquid interface production (CLIP), was utilized to fabricate supramolecular shape memory hydrogels with high resolutions and complex 3D geometries. The UV-curable ink for CLIP was composed of hydrogel precursors (alginate and acrylamide) and a photo-initiator (ammonium persulfate). As expected, the double network formed from ionically crosslinked alginate and covalently crosslinked polyacrylamide endowed the printed hydrogels with excellent mechanical properties. Meanwhile, due to the reversible metal-ligand coordination interaction, the hydrogel could be temporarily immobilized into an optional shape after introducing calcium ions and return to its original shapes upon ion removal, exhibiting ion-triggered shape memory effect. Moreover, the presence of ions greatly improved the conductivity of the resultant hydrogels. Such 3D printed versatile hydrogels with complex geometries demonstrated the potential for selected applications, particularly in load-bearing materials and flexible electronic devices.

18.
Sci Adv ; 5(8): eaaw9906, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453333

RESUMO

Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.


Assuntos
Glucose/análise , Microfluídica/métodos , Potássio/análise , Sódio/análise , Suor/química , Técnicas Biossensoriais , Diabetes Mellitus/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Íons/análise , Potássio/química , Sódio/química
19.
Nano Lett ; 19(9): 6346-6351, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31381353

RESUMO

Levodopa is the standard medication clinically prescribed to patients afflicted with Parkinson's disease. In particular, the monitoring and optimization of levodopa dosage are critical to mitigate the onset of undesired fluctuations in the patients' physical and emotional conditions such as speech function, motor behavior, and mood stability. The traditional approach to optimize levodopa dosage involves evaluating the subjects' motor function, which has many shortcomings due to its subjective and limited quantifiable nature. Here, we present a wearable sweat band on a nanodendritic platform that quantitatively monitors levodopa dynamics in the body. Both stationary iontophoretic induction and physical exercise are utilized as our methods of sweat extraction. The sweat band measures real-time pharmacokinetic profiles of levodopa to track the dynamic response of the drug metabolism. We demonstrated the sweat band's functionalities on multiple subjects with implications toward the systematic administering of levodopa and routine management of Parkinson's disease.


Assuntos
Monitoramento de Medicamentos/instrumentação , Levodopa , Doença de Parkinson , Suor/metabolismo , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Levodopa/administração & dosagem , Levodopa/farmacocinética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
20.
ACS Sens ; 4(7): 1925-1933, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31271034

RESUMO

Wearable devices for health monitoring and fitness management have foreseen a rapidly expanding market, especially those for noninvasive and continuous measurements with real-time display that provide practical convenience and eliminated safety/infection risks. Herein, a self-powered and fully integrated smartwatch that consists of flexible photovoltaic cells and rechargeable batteries in the forms of a "watch strap", electrochemical glucose sensors, customized circuits, and display units integrated into a "dial" platform is successfully fabricated for real-time and continuous monitoring of sweat glucose levels. The functionality of the smartwatch, including sweat glucose sensing, signal processing, and display, can be supported with the harvested/converted solar energy without external charging devices. The Zn-MnO2 batteries serve as intermediate energy storage units and the utilization of aqueous electrolytes eliminated safety concerns for batteries, which is critical for wearable devices. Such a wearable system in a smartwatch fashion realizes integration of energy modules with self-powered capability, electrochemical sensors for noninvasive glucose monitoring, and in situ and real-time signal processing/display in a single platform for the first time. The as-fabricated fully integrated and self-powered smartwatch also provides a promising protocol for statistical study and clinical investigation to reveal correlations between sweat compositions and human body dynamics.


Assuntos
Técnicas Eletroquímicas/métodos , Glucose/análise , Monitorização Fisiológica/métodos , Suor/química , Dispositivos Eletrônicos Vestíveis , Adulto , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Fontes de Energia Elétrica , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Ferrocianetos/química , Glucose Oxidase/química , Humanos , Masculino , Compostos de Manganês/química , Monitorização Fisiológica/instrumentação , Níquel/química , Óxidos/química , Energia Solar , Adulto Jovem , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA