Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Chem Sci ; 15(28): 10867-10881, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027280

RESUMO

The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 µs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.

2.
J Phys Chem B ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016740

RESUMO

In order to obtain a long-lived charge separation (CS) state in compact electron donor-acceptor molecular systems, we prepared a series of naphthalenediimide (NDI)-phenothiazine (PTZ) triads, with phenylene as the linker between the donor and acceptor. Conformation restriction is imposed to control the mutual orientation of the NDI and PTZ units by attaching methyl groups on the phenylene linker to tune the electronic coupling between the donor and the acceptor. Moreover, the PTZ moiety was oxidized to sulfoxide to tune the ordering of the CS state and the 3LE state (LE: locally excited state). UV-vis absorption spectra indicate electronic coupling between NDI with the phenylene linker as well as the PTZ units, manifested by the appearance of a charge-transfer (CT) absorption band, whereas this coupling is devoid in the triads with conformation restriction imposed. Fluorescence is strongly quenched in the triads compared to the reference compound, indicating electron transfer upon photoexcitation. Femtosecond transient absorption spectra indicate that the CS takes 0.8 ps, and then the 3LE state is formed by charge recombination in 83 ps. Nanosecond transient absorption (ns-TA) spectra show that the 3NDI state was observed in nonpolar solvents such as cyclohexane (triplet state lifetime: 95.7 µs), whereas the CS state was observed in more polar solvents. The CS state lifetimes are up to 1.2 µs (in toluene). Time-resolved electron paramagnetic resonance spectra of the triads in toluene consist of two types of signals: CS states (narrower signals, ∼10 mT) and 3LE states (broader signals, ∼50 to 200 mT). In the spectra of the triads containing PTZ, the CS state signals dominate, whereas for the triads containing oxidized PTZ, the 3NDI signals (zero-field splitting D ≈ 2000 MHz) prevail, both observations being in agreement with the ns-TA spectral studies. The electron spin polarization phase pattern of the 3NDI states of the triads indicates that the intersystem crossing (ISC) mechanism is spin-orbit charge-transfer ISC. Considering the 3CS state as ion pairs, the electron-exchange energy (J) is determined to be -39 to -59 MHz, and the electron spin dipolar interaction is 83-92 MHz.

3.
Org Biomol Chem ; 22(26): 5257-5283, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38884590

RESUMO

Heavy atom-free triplet photosensitizers (PSs) can overcome the high cost and biological toxicity of traditional molecular systems containing heavy atoms (such as Pt(II), Ir(III), Ru(II), Pd(II), Lu(III), I, or Br atoms) and, therefore, are developing rapidly. Connecting a stable free radical to the chromophore can promote the intersystem crossing (ISC) process through electron spin exchange interaction to produce the triplet state of the chromophore or the doublet (D) and quartet (Q) states when taking the whole spin system into account. These molecular systems based on the radical enhanced ISC (REISC) mechanism are important in the field of heavy atom-free triplet PSs. The REISC system has a simple molecular structure and good biocompatibility, and it is especially helpful for building high-spin quantum states (D and Q states) that have the potential to be developed as qubits in quantum information science. This review introduces the molecular structure design for the purpose of high-spin states. Time-resolved electron paramagnetic resonance (TREPR) is the most important characterization method to reveal the properties of these molecular systems, generation mechanism and electron spin polarization (ESP) of the high spin states. The spin polarization manipulation of high spin states and potential application in the field of quantum information engineering are also summarized. Moreover, molecular design principles of the REISC system to obtain long absorption wavelength, high triplet state quantum yield and long triplet state lifetime are introduced, as well as applications of the compounds in triplet-triplet annihilation upconversion, photodynamic therapy and bioimaging. This review is useful for the design of heavy atom-free triplet PSs based on the radical-chromophore molecular structure motif and the study of the photophysics of the compounds, as well as the electron spin dynamics of the multi electron system upon photoexcitation.

4.
Chemistry ; : e202401084, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819870

RESUMO

The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of µs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.

5.
Inorg Chem ; 63(21): 9931-9940, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38738860

RESUMO

A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 µs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.

6.
Angew Chem Int Ed Engl ; 63(29): e202402774, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38584586

RESUMO

Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 µs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 µM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 µm.

7.
Chemistry ; 30(27): e202303799, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38319002

RESUMO

A series of near-IR absorbing 2,6-diarylated BF2-chelated aza-boron-dipyrromethenes (aza-BDPs) derivatives bearing different electron donors (benzene, naphthalene, phenanthrene, phenothiazine and carbazole) were designed and synthesized. The effect of different electron donor substitutions on the photophysical properties was studied by steady-state UV-vis absorption and fluorescence spectra, electrochemical, time-resolved nanosecond transient absorption (ns-TA) spectroscopy and theoretical computations. The UV-vis absorption spectra of AzaBDP-PTZ and AzaBDP-CAR (λabs=710 nm in toluene) showed a bathochromic absorption profile compared with the reference AzaBDP-Ph (λabs=685 nm in toluene), indicating the non-negligible electronic interaction at the ground state between donor and acceptor moieties. Moreover, the fluorescence is almost completely quenched for AzaBDP-PTZ/AzaBDP-CAR (fluorescence quantum yield, ΦF=0.2-0.7 % in toluene) as compared with the AzaBDP-Ph (ΦF=27 % in toluene). However, the apparent intersystem crossing ability of these compounds is poor, based on the singlet oxygen quantum yield (ΦΔ=0.3-1.5 %). The ns-TA spectral study showed typical Bodipy localized triplet state transient features, short-lived excited triplet state for AzaBDP-Ph (τT=53.2 µs) versus significantly long-lived triplet state for AzaBDP-CAR (τT=114 µs) was observed under deaerated experimental conditions. These triplet state lifetimes are much longer than that obtained with diiodoAzaBDP (intramolecular heavy atom effect, τT=1.5~7.2 µs). These information are useful for molecular structure design of triplet photosensitizers, for which longer triplet state lifetimes are usually desired. Theoretical computations displayed that the triplet state is mainly localized on the AzaBDP core, moreover, it was found that the HOMO/LUMO energy gap decreased after introducing donor moieties to the skeleton as compared with the reference.

8.
Chem Commun (Camb) ; 60(17): 2385-2388, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38321968

RESUMO

We present a red light-activated zincII bis(dipyrrin) symmetry breaking charge transfer (SBCT) architecture, showing a large molar absorption coefficient (ε = 15.4 × 104 M-1 cm-1), high reactive singlet oxygen generation efficiency (ΦΔ ≈ 0.8) and long-lived triplet state (τT = 150 µs) compared to the donor-acceptor analogue dipyrrin-BF2 complex, highlighting the superiority of the SBCT approach. For the first time, we demonstrated the potential of a SBCT scaffold in red-light-induced methyl methacrylate (MMA) polymerization, using a dual photocatalyst excitation approach.

9.
J Phys Chem Lett ; 15(4): 959-968, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252167

RESUMO

To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 µs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.

10.
Phys Chem Chem Phys ; 26(1): 161-173, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086643

RESUMO

Photooxidative coupling of benzylic amines using naturally abundant O2 as an oxidant under visible light irradiation is an alternative green approach to synthesis imines and is of both fundamental and practical significance. We investigated the photophysical properties of flavin (FL) that is a naturally available sensitizer and its derivatives, i.e. 9-bromoflavin (MB-FL), 7,8-dibromoflavin (DB-FL) and 10-phenylflavin (Ph-FL), as well as the performance of these FL-based sensitizers (FLPSs) in the photooxidative coupling of benzylic amines to imines combining experimental and theoretical efforts. We showed that chemical functionalization with Br and phenyl effectively improves the photophysical properties of these FLPSs, in terms of absorption in the visible light range, singlet oxygen quantum yields, triplet lifetime, etc. Apart from nearly quantitative selectivity for the production of imines, the performance of DB-FL is superior to those of other FLPSs, and it is among the best photocatalysts for imine synthesis. Specifically, 0.5 mol% DB-FL is capable of converting 91% of 0.2 mmol benzylamine and more than 80% of 0.2 mmol fluorobenzylic amine derivatives into their corresponding imines in 5 h batch runs. Mechanistic investigation finely explained the observed photophysical properties of FLPSs and highlighted the dominant role of electron transfer in FLPS sensitized coupling of benzylic amines to imines. This work not only helps to understand the pathways for photocatalysis with FLPSs but also paves the way for the design of novel and efficient PSs to promote organic synthesis.

11.
Phys Chem Chem Phys ; 25(46): 31667-31682, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966808

RESUMO

Herein, a spiro rhodamine (Rho)-thionated naphthalimide (NIS) electron donor-acceptor orthogonal dyad (Rho-NIS) was prepared to study the formation of a long-lived charge separation (CS) state via the electron spin control approach. The transient absorption (TA) spectra of Rho-NIS indicated that the intersystem crossing (ISC) occurs within 7-42 ps to produce the 3NIS state via the spin orbit coupling ISC (SOC-ISC). The energy order of 3CS (2.01 eV in n-hexane, HEX) and 3LE states (1.68 eV in HEX) depended on the solvent polarity. The 3NIS state having n-π* character and a lifetime of 0.38 µs was observed for Rho-NIS in toluene (TOL). Alternatively, in acetonitrile (ACN), the long-lived 3CS state (0.21 µs) with a high CS state quantum yield (ΦCS, 97%) was produced with the 3NIS state as the precursor and the CS took 134 ps. On the contrary, in the case of the reference Rho-naphthalimide (NI) Rho-NI dyad without thionation of its carbonyl group, a long-lived CS state (0.94 µs) with a high energy level (ECS = 2.12 eV) was generated even in HEX with a lower ΦCS (49%). In the presence of an acid, the Rho unit in the Rho-NIS adopted an open form (Rho-o) and the 3NIS state was produced within 24-47 ps with the 1Rho-o state as the precursor. Subsequently, slow intramolecular triplet-triplet energy transfer (TTET, 0.11-0.60 µs) produced the 3Rho-o state (9.4-13.6 µs). According to the time-resolved electron paramagnetic resonance (TREPR) spectra of NIS-NH2, the zero-field splitting (ZFS) parameter |D| and E of the triplet state were determined to be 6165 MHz and -1233 MHz, respectively, indicating that its triplet state has significant nπ* character, which was supported by its short triplet state lifetime (6.1 µs).

12.
J Phys Chem B ; 127(31): 6982-6998, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527418

RESUMO

To study the charge separation (CS) and long-lived CS state, we prepared a series of dyads based on naphthalimide (NI, electron acceptor) and phenothiazine (PTZ, electron donor), with an intervening phenyl linker attached on the N-position of both moieties. The purpose is to exploit the electron spin control effect to prolong the CS-state lifetime by formation of the 3CS state, instead of the ordinary 1CS state, the spin-correlated radical pair (SCRP), or the free ion pairs. The electronic coupling magnitude is tuned by conformational restriction exerted by the methyl groups on the phenyl linker. Differently from the previously reported NI-PTZ analogues containing long and flexible linkers, we observed a significant CS emission band centered at ca. 600 nm and thermally activated delayed fluorescence (TADF) with a lifetime of 13.8 ns (population ratio: 42%)/321.6 µs (56%). Nanosecond transient absorption spectroscopy indicates that in cyclohexane (CHX), only the 3NI* state was observed (lifetime τ = 274.7 µs), in acetonitrile (ACN), only the CS state was observed (τ = 1.4 µs), whereas in a solvent with intermediate polarity, such as toluene (TOL), both the 3NI* (shorter-lived) and the CS states were observed. Observation of the long-lived CS state in ACN, yet lack of TADF, confirms the spin-vibronic coupling theoretical model of TADF. Femtosecond transient absorption spectroscopy indicates that charge separation occurs in both nonpolar and polar solvents, with time constants ranging from less than 1 ps in ACN to ca. 60 ps in CHX. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of the 3NI* and CS states for the dyads upon photoexcitation. The electron spin-spin dipole interaction magnitude of the radical anion and cation of the CS state is intermediate between that of a typical SCRP and a 3CS state, suggesting that the long CS-state lifetime is partially due to the electron spin control effect.

13.
Chemistry ; 29(61): e202302137, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37553294

RESUMO

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 µs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 µs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.

14.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446398

RESUMO

We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C-N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin-spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 µs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation.


Assuntos
Luz , Xantenos , Espectroscopia de Ressonância de Spin Eletrônica , Rodaminas
15.
Beilstein J Org Chem ; 19: 1028-1046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497052

RESUMO

A series of 1,8-naphthalimide (NI)-phenothiazine (PTZ) electron donor-acceptor dyads were prepared to study the thermally activated delayed fluorescence (TADF) properties of the dyads, from a point of view of detection of the various transient species. The photophysical properties of the dyads were tuned by changing the electron-donating and the electron-withdrawing capability of the PTZ and NI moieties, respectively, by oxidation of the PTZ unit, or by using different aryl substituents attached to the NI unit. This tuning effect was manifested in the UV-vis absorption and fluorescence emission spectra, e.g., in the change of the charge transfer absorption bands. TADF was observed for the dyads containing the native PTZ unit, and the prompt and delayed fluorescence lifetimes changed with different aryl substituents on the imide part. In polar solvents, no TADF was observed. For the dyads with the PTZ unit oxidized, no TADF was observed as well. Femtosecond transient absorption spectra showed that the charge separation takes ca. 0.6 ps, and admixtures of locally excited (3LE) state and charge separated (1CS/3CS) states formed (in n-hexane). The subsequent charge recombination from the 1CS state takes ca. 7.92 ns. Upon oxidation of the PTZ unit, the beginning of charge separation is at 178 fs and formation of 3LE state takes 4.53 ns. Nanosecond transient absorption (ns-TA) spectra showed that both 3CS and 3LE states were observed for the dyads showing TADF, whereas only 3LE or 3CS states were observed for the systems lacking TADF. This is a rare but unambiguous experimental evidence that the spin-vibronic coupling of 3CS/3LE states is crucial for TADF. Without the mediating effect of the 3LE state, no TADF is resulted, even if the long-lived 3CS state is populated (lifetime τCS ≈ 140 ns). This experimental result confirms the 3CS → 1CS reverse intersystem crossing (rISC) is slow, without coupling with an approximate 3LE state. These studies are useful for an in-depth understanding of the photophysical mechanisms of the TADF emitters, as well as for molecular structure design of new electron donor-acceptor TADF emitters.

16.
J Phys Chem B ; 127(26): 5905-5923, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352509

RESUMO

We prepared a series of phenothiazine (PTZ)-anthraquinone (AQ) electron donor-acceptor dyads to study the relationship between molecular structures and the possibility of charge transfer (CT) and intersystem crossing (ISC). As compared to the previously reported PTZ-AQ dyad with a direct connection of two units via a C-N single bond, the PTZ and AQ units are connected via a p-phenylene or p-biphenylene linker. Conformation restriction is imposed by attaching ortho-methyl groups on the phenylene linker. UV-vis absorption spectra indicate electronic coupling between the PTZ and AQ units in the dyads without conformation restriction. Different from the previously reported PTZ-AQ, thermally activated delayed fluorescence (TADF) is observed for the dyads containing one phenylene linker (PTZ-Ph-AQ and PTZ-PhMe-AQ). The prompt fluorescence lifetime in cyclohexane is exceptionally long (τPF = 62.0 ns, population ratio: 99.2%) and 245.0 ns (93.5%) for PTZ-Ph-AQ and PTZ-PhMe-AQ, respectively (normally τPF <20 ns); the delayed fluorescence lifetimes for these two dyads were determined as τDF = 2.4 µs (6.5%) and 7.6 µs (0.8%), respectively. For the dyad containing a biphenylene linker (PTZ-Ph2Me-AQ), no TADF was observed. Charge-separated (CS) states were observed for PTZ-Ph-AQ and PTZ-PhMe-AQ, and the lifetimes were determined as 7.0 and 1.3 µs, respectively, indicating the triplet spin multiplicity of the CS state. The 3CS state lifetimes are shortened to 100 ns and 440 ns for the two dyads, respectively, in the polar solvent acetonitrile. For dyads with a longer linker, i.e., PTZ-Ph2Me-AQ, the CS state lifetime is not sensitive to solvent polarity (τCS = 1.8 and 1.3 µs in cyclohexane and acetonitrile, respectively). In reference dyads, where the PTZ unit is oxidized to sulfoxide, no CT absorption band and TADF were observed, which is attributed to the increased CS state energy (>3 eV) becoming higher than that of the AQ triplet (3AQ*) state (ca. 2.7 eV). These experimental evidence show that the presence of 1CS, 3CS, and 3LE (LE: locally excited) states sharing similar energy is essential for the occurrence of TADF. Population of the long-lived 3CS state (with a lifetime of a few µs) does not produce by itself TADF, because the ISC process of 1CS→3CS is nonsufficient. Femtosecond transient absorption spectra show that charge separation (CS) occurs readily (<5 ps) for most dyads, even in nonpolar solvents. Nanosecond pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that either a spin correlated radical pair (SCRP) is formed, with the electron exchange energy 2J = +2.14 mT, or radical pairs with stronger interaction, |2J| > 6.57 mT. These studies are useful for in-depth understanding of the CS and ISC in compact electron donor-acceptor dyads and for design of efficient TADF emitters.

17.
J Phys Chem A ; 127(22): 4856-4866, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226449

RESUMO

Heavy atom-free organic chromophores showing absorption in the near-IR region with intersystem crossing (ISC) ability are important for applications in various fields, e.g., photocatalysis and photodynamic therapy. Herein, we studied the photophysical property of a naphthalenediimide (NDI) derivative, in which the NDI chromophore is fused with pentacyclic 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), which shows a strong charge-transfer (CT) absorption band (S0 → 1CT transition) in the near-IR region of 600-740 nm. The effect of extended π-conjugation framework in NDI-DBU compared with the derivative of mono-amino substitution (NDI-NH-Br) was studied by steady-state and nanosecond transient absorption (ns-TA) spectra, electron paramagnetic resonance (EPR) spectroscopy, and theoretical computations. The fluorescence is almost completely quenched for NDI-DBU (ΦF = 1.0%) as compared with NDI-NH-Br (ΦF = 24% in toluene). However, the ISC of NDI-DBU is poor, and the singlet oxygen quantum yield was determined as ΦΔ = 9% versus ΦΔ = 57% for NDI-NH-Br, although the compound has significantly twisted molecular structure. The ns-TA spectral study showed a long-lived triplet excited state (τT = 132 µs) in NDI-DBU, with T1 energy of 1.20-1.44 eV, and the ISC is via the S2 → T3 path, which is verified by theoretical calculations. This study displayed that the twisting of molecular geometry does not always assure efficient ISC.

18.
Chem Sci ; 14(19): 5014-5027, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206394

RESUMO

To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.

19.
Chemistry ; 29(43): e202301125, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198744

RESUMO

In order to obtain long-lived charge separated (CS) states in electron donor-acceptor dyads, herein we prepared a series of anthraquinone (AQ)-phenothiazine (PTZ) dyads, with adamantane as the linker. UV-vis absorption spectra show negligible electronic interaction between the AQ and PTZ units at ground state, yet charge transfer (CT) emission bands were observed. Nanosecond transient absorption shows that the 3 AQ state is populated upon photoexcitation for AQ-PTZ in cyclohexane (CHX), but in acetonitrile (ACN) a 3 CS state is formed. Similar results were observed for AQ-PTZ-M. The 3 CS state lifetimes were determined as 0.52 µs and 0.49 µs, respectively. Upon oxidation of the PTZ unit, the 3 AQ state was observed in both polar and non-polar solvents. For AQ-PTZ, femtosecond transient absorption spectra show fast formation of the 3 AQ state in all solvents, with no charge separation in CHX, while formation of the 3 CS state takes 106 ps in ACN. For AQ-PTZ-M, a 3 CS state is formed in CHX within 241 ps. Time-resolved electron paramagnetic resonance (TREPR) spectra show that a radical ion pair with electron exchange energy of |2 J|≥5.68 mT was observed for AQ-PTZ and AQ-PTZ-M, whereas in the dyads with the PTZ unit oxidized, only the 3 AQ state was observed.

20.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903415

RESUMO

Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Estrutura Molecular , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA