Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Colloid Interface Sci ; 674: 336-344, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936090

RESUMO

Sluggish kinetics and severe structural instability of manganese-based cathode materials for rechargeable aqueous zinc-ion batteries (ZIBs) lead to low-rate capacity and poor cyclability, which hinder their practical applications. Pillaring manganese dioxide (MnO2) by pre-intercalation is an effective strategy to solve the above problems. However, increasing the pre-intercalation content to realize stable cycling of high capacity at large current densities is still challenging. Here, high-rate aqueous Zn2+ storage is realized by a high-capacity K+-pillared multi-nanochannel MnO2 cathode with 1 K per 4 Mn (δ-K0.25MnO2). The high content of the K+ pillar, in conjunction with the three-dimensional confinement effect and size effect, promotes the stability and electron transport of multi-nanochannel layered MnO2 in the ion insertion/removal process during cycling, accelerating and accommodating more Zn2+ diffusion. Multi-perspective in/ex-situ characterizations conclude that the energy storage mechanism is the Zn2+/H+ ions co-intercalating and phase transformation process. More specifically, the δ-K0.25MnO2 nanospheres cathode delivers an ultrahigh reversible capacity of 297 mAh g-1 at 1 A g-1 for 500 cycles, showing over 96 % utilization of the theoretical capacity of δ-MnO2. Even at 3 A g-1, it also delivered a 63 % utilization and 64 % capacity retention after 1000 cycles. This study introduces a highly efficient cathode material based on manganese oxide and a comprehensive analysis of its structural dynamics. These findings have the potential to improve energy storage capabilities in ZIBs significantly.

2.
Plant Foods Hum Nutr ; 79(2): 440-450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441843

RESUMO

The flowers of Edgeworthia gardneri are used as herbal tea and medicine to treat various metabolic diseases including hyperglycemia, hypertension, and hyperlipidemia. This paper investigate the chemical constituents and biological activities of ethanolic extract and its different fractions from E. gardneri flowers. Firstly, the E. gardneri flowers was extracted by ethanol-aqueous solution to obtain crude extract (CE), which was subsequently fractionated by different polar organic solution to yield precipitated crystal (PC), dichloromethane (DCF), ethyl acetate (EAF), n-butanol (n-BuF), and residue water (RWF) fractions. UHPLC-ESI-HRMS/MS analysis resulted in the identification of 25 compounds, and the main compounds were flavonoids and coumarins. The precipitated crystal fraction showed the highest phenolic and flavonoid contents with 344.4 ± 3.38 mg GAE/g extract and 305.86 ± 0.87 mg RE/g extract. The EAF had the strongest antioxidant capacity and inhibitory effect on α-glucosidase and pancreatic lipase with IC50 values of 126.459 ± 7.82 and 23.16 ± 0.79 µg/mL. Besides, both PC and EAF significantly regulated the glucose and lipid metabolism disorders by increasing glucose consumption and reducing TG levels in HepG2 cells. Molecular docking results suggested that kaempferol-3-O-glucoside and tiliroside had good binding ability with enzymes, indicating that they may be potential α-glucosidase and pancreatic lipase inhibitors. Therefore, the E. gardneri flowers could be served as a bioactive agent for the regulation of metabolic disorders.


Assuntos
Antioxidantes , Flores , Hipoglicemiantes , Hipolipemiantes , Lipase , Extratos Vegetais , Flores/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Humanos , Lipase/antagonistas & inibidores , Lipase/metabolismo , Flavonoides/farmacologia , Flavonoides/análise , Células Hep G2 , alfa-Glucosidases/metabolismo , Fenóis/farmacologia , Fenóis/análise , Inibidores de Glicosídeo Hidrolases/farmacologia
3.
Sci Total Environ ; 920: 170777, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331278

RESUMO

Quantitative assessment of the drivers behind the variation of six criteria pollutants, namely fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter (PM10), and carbon monoxide (CO), in the warming climate will be critical for subsequent decision-making. Here, a novel hybrid model of multi-task oriented CNN-BiLSTM-Attention was proposed and performed in Taiyuan during 2015-2020 to synchronously and quickly quantify the impact of anthropogenic and meteorological factors on the six criteria pollutants variations. Empirical results revealed the residential and transportation sectors distinctly decreased SO2 by 25 % and 22 % and CO by 12 % and 10 %. Gradual downward trends for PM2.5, PM10, and NO2 were mainly ascribed to the stringent measures implemented in transportation and power sectors as part of the Blue Sky Defense War, which were further reinforced by the COVID-19 pandemic. Nevertheless, temperature-dependent adverse meteorological effects (27 %) and anthropogenic intervention (12 %) jointly increased O3 by 39 %. The O3-driven pollution events may be inevitable or even become more prominent under climate warming. The industrial (5 %) and transportation sectors (6 %) were mainly responsible for the anthropogenic-driven increase of O3 and precursor NO2, respectively. Synergistic reduction of precursors (VOCs and NOx) from industrial and transportation sectors requires coordination with climate actions to mitigate the temperature-dependent O3-driven pollution, thereby improving regional air quality. Meanwhile, the proposed model is expected to be applied flexibly in various regions to quantify the drivers of the pollutant variations in a warming climate, with the potential to offer valuable insights for improving regional air quality in near future.

4.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
5.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752622

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Arabidopsis/metabolismo , Morte Celular , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
6.
ACS Appl Mater Interfaces ; 15(34): 40735-40743, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37592844

RESUMO

Electrostatic capacitors based on dielectric materials are essential for enabling technological advances, including miniaturization and integration of electronic devices. However, maintaining a high polarization and breakdown field strength simultaneously in electrostatic capacitors remains a major challenge for industrial applications. Herein, a universal approach to delaying saturation polarization in BaTiO3-based ceramic is reported via tailoring phase fraction to improve capacitive performance. The ceramic of 0.85(0.7BaTiO3-0.3Bi0.5Na0.5TiO3)-0.15Bi0.5Li0.5(Ti0.75Ta0.2)O3 delivers an ultrahigh recoverable energy density (Wrec) of 7.16 J cm-3 along with an efficiency (η) of approximately 90% at a breakdown electric field of 700 kV cm-1, outperforming the current BaTiO3-based ceramics and other lead-free ceramics. Meanwhile, the Wrec and η exhibit wide frequency, temperature, and cycling fatigue stability. Additionally, both an extremely fast discharge time of 115 ns and a large power density of 106.16 MW cm-3 are concurrently attained. This work offers a promising pathway for delaying saturation polarization design in order to create scalable high-energy-density ceramics capacitors and highlight the research prospects of pulse power applications.

7.
Small ; 19(40): e2302346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287364

RESUMO

Driven by the information industry, advanced electronic devices require dielectric materials which combine both excellent energy storage properties and high temperature stability. These requirements hold the most promise for ceramic capacitors. Among these, the modulated Bi0.5 Na0.5 TiO3 (BNT)-based ceramics can demonstrate favorable energy storage properties with antiferroelectric-like properties, simultaneously, attaching superior temperature stability resulted from the high Curie temperature. Inspired by the above properties, a strategy is proposed to modulate antiferroelectric-like properties via introducing Ca0.7 La0.2 TiO3 (CLT) into Bi0.395 Na0.325 Sr0.245 TiO3 (BNST) ((1-x)BNST-xCLT, x = 0.10, 0.15, 0.20, 0.25). Combining both orthorhombic phase and defect dipole designs successfully achieve antiferroelectric-like properties in BNST-CLT ceramics. The results illustrate that 0.8BNST-0.2CLT presents superior recoverable energy storage density ≈8.3 J cm-3 with the ideal η ≈ 80% at 660 kV cm-1 . Structural characterizations demonstrate that there is the intermediate modulated phase with the coexistence of the antiferroelectric and ferroelectric phases. In addition, in situ temperature measurements prove that BNST-CLT ceramics exhibit favorable temperature stability over a wide temperature range. The present work illustrates that BNT-based ceramics with antiferroelectric-like properties can effectively enhance the energy storage performance, which provides novel perspectives for the subsequent development of advanced pulsed capacitors.

8.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838918

RESUMO

Confusoside (CF), a major chemical compound in the leaves of Anneslea fragrans Wall., is a dihydrochalcone glycoside with excellent antioxidant and anti-inflammatory effects. However, the hepatoprotective effect of CF has not been described. This study aimed to explore the hepatoprotective effect of CF against acetaminophen (APAP)-induced hepatic injury in HepG2 cells. First, the potential hepatoprotective effect mechanisms of CF were predicted by network pharmacology and were thought to involve reducing inflammation and inhibiting apoptosis. Target proteins (phosphatidylinositol3-kinase (PI3K) and caspase-3 (CASP3)) were found via molecular docking analysis. To verify the predicted results, an analysis of biological indicators was performed using commercial kits and Western blotting. The results showed that CF significantly decreased the levels of liver injury biomarkers (ALT, AST, and LDH), strongly inhibited the production of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and the NO level via inhibiting the activation of the NF-κB signaling pathway, and markedly regulated the expression levels of Bcl2, Bax, and cleaved-CASP3/9 proteins by activating the PI3K-CASP3 apoptosis pathway. The results demonstrated that CF has a therapeutic effect on APAP-induced liver injury by inhibiting intracellular inflammation and cell apoptosis, indicating that CF may be used as a potential reagent for the prevention and treatment of APAP-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Compostos Fitoquímicos , Humanos , Acetaminofen/efeitos adversos , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Fígado , Simulação de Acoplamento Molecular , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células Hep G2 , Compostos Fitoquímicos/farmacologia
9.
Food Funct ; 14(5): 2432-2443, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786681

RESUMO

Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1ß, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/efeitos adversos , Antioxidantes/metabolismo , Caspases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais
10.
Nat Plants ; 9(2): 228-237, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646829

RESUMO

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Oryza/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Catalase/genética , Catalase/metabolismo , Alelos , Peróxido de Hidrogênio/metabolismo , Magnaporthe/metabolismo , Melhoramento Vegetal , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
11.
BMC Neurol ; 23(1): 4, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604637

RESUMO

BACKGROUND: The majority of postoperative complications of tonsillectomy are bleeding. However, massive cerebral infarction following haemostasis is a very rare and serious complication and has rarely been reported clinically. CASE PRESENTATION: We performed a left tonsillectomy on a patient with chronic tonsillitis. After that, active bleeding was found under the tonsillar fossa, so an exploratory hypopharyngeal haemostasis was performed. However, the bleeding worsened intraoperatively, so the patient was converted to a cervical angiographic embolization. The interventional procedure was completed successfully without an ectopic embolic event. After the procedure, the patient was transferred to the intensive care unit (ICU) and was diagnosed with acute massive cerebral infarction in the left cerebral hemisphere after awakening symptoms combined with cranial computed tomography angiography (CTA) results. Symptomatic treatment such as sedation and analgesia, dehydration to lower intracranial pressure, and maintenance of respiratory and circulatory stability was then administered. After treatment, the patient's condition stabilized and he was transferred to the rehabilitation physiotherapy unit for rehabilitation. CONCLUSION: Post-tonsillectomy haemorrhage can be augmented with a carotid arteriogram to clarify whether the tonsillar fossa is at a safe distance from the posterior internal carotid artery. Furthermore, interventional haemostasis can also be performed as early as possible to reduce the incidence of complications in cases of persistent post-tonsillectomy bleeding.


Assuntos
Tonsilectomia , Tonsilite , Masculino , Humanos , Tonsilectomia/efeitos adversos , Tonsilectomia/métodos , Hemorragia Pós-Operatória/etiologia , Hemorragia Pós-Operatória/cirurgia , Tonsilite/complicações , Tonsilite/cirurgia , Complicações Pós-Operatórias/etiologia , Infarto Cerebral/complicações
12.
Small ; 19(14): e2206840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625285

RESUMO

Electrostatic capacitors are emerging as a highly promising technology for large-scale energy storage applications. However, it remains a significant challenge to improve their energy densities. Here, an effective strategy of introducing non-isovalent ions into the BiFeO3 -based (BFO) ceramic to improve energy storage capability via delaying polarization saturation is demonstrated. Accordingly, an ultra-high energy density of up to 7.4 J cm-3 and high efficiency ≈ 81% at 680 kV m-1 are realized, which is one of the best energy storage performances recorded for BFO-based ceramics. The outstanding comprehensive energy storage performance is attributed to inhibiting the polarization hysteresis resulting from generation ergodic relaxor zone and random field, and generating highly-delayed polarization saturation with continuously-increased polarization magnitudes with the electric field of supercritical evolution. The contributions demonstrate that delaying the polarization saturation is a consideration for designing the next generation of lead-free dielectric materials with ultra-high energy storage performance.

13.
New Phytol ; 238(1): 367-382, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522832

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia
14.
Front Bioeng Biotechnol ; 11: 1298914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260730

RESUMO

Introduction: The application prospects of percutaneous endoscopic lumbar discectomy (PELD) as a minimally invasive spinal surgery method in the treatment of lumbar disc herniation are extensive. This study aims to find the optimal entry angle for the trephine at the L4/5 intervertebral space, which causes less lumbar damage and has greater postoperative stability. To achieve this, we conduct a three-dimensional simulated analysis of the degree of damage caused by targeted puncture-based trephine osteotomy on the lumbar spine. Methods: We gathered clinical CT data from patients to construct a lumbar model. This model was used to simulate and analyze the variations in trephine osteotomy volume resulting from targeted punctures at the L4/5 interspace. Furthermore, according to these variations in osteotomy volume, we created Finite Element Analysis (FEA) models specifically for the trephine osteotomy procedure. We then applied mechanical loads to conduct range of motion and von Mises stress analyses on the lumbar motion unit. Results: In percutaneous endoscopic interlaminar discectomy, the smallest osteotomy volume occurred with a 20° entry angle, close to the base of the spinous process. The volume increased at 30° and reached its largest at 40°. In percutaneous transforaminal endoscopic discectomy, the largest osteotomy volume was observed with a 50° entry angle, passing through the facet joints, with smaller volumes at 60° and the smallest at 70°. In FEA, M6 exhibited the most notable biomechanical decline, particularly during posterior extension and right rotation. M2 and M3 showed significant differences primarily in rotation, whereas the differences between M3 and M4 were most evident in posterior extension and right rotation. M5 displayed their highest stress levels primarily in posterior extension, with significant variations observed in right rotation alongside M4. Conclusion: The appropriate selection of entry sites can reduce lumbar damage and increase stability. We suggest employing targeted punctures at a 30° angle for PEID and at a 60° angle for PTED at the L4/5 intervertebral space. Additionally, reducing the degree of facet joint damage is crucial to enhance postoperative stability in lumbar vertebral motion units.

15.
Mol Plant ; 15(11): 1790-1806, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36245122

RESUMO

Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.


Assuntos
Oryza , Oryza/genética , Oryza/microbiologia , Espécies Reativas de Oxigênio , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Flores/genética , Flores/microbiologia , Sementes
17.
New Phytol ; 236(6): 2216-2232, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36101507

RESUMO

Rice production is threatened by multiple pathogens. Breeding cultivars with broad-spectrum disease resistance is necessary to maintain and improve crop production. Previously we found that overexpression of miR160a enhanced rice blast disease resistance. However, it is unclear whether miR160a also regulates resistance against other pathogens, and what the downstream signaling pathways are. Here, we demonstrate that miR160a positively regulates broad-spectrum resistance against the causative agents of blast, leaf blight and sheath blight in rice. Mutations of miR160a-targeted Auxin Response Factors result in different alteration of resistance conferred by miR160a. miR160a enhances disease resistance partially by suppressing ARF8, as mutation of ARF8 in MIM160 background partially restores the compromised resistance resulting from MIM160. ARF8 protein binds directly to the promoter and suppresses the expression of WRKY45, which acts as a positive regulator of rice immunity. Mutation of WRKY45 compromises the enhanced blast resistance and bacterial leaf blight resistance conferred by arf8 mutant. Overall, our results reveal that a microRNA coordinates rice broad-spectrum disease resistance by suppressing multiple target genes that play different roles in disease resistance, and uncover a new regulatory pathway mediated by the miR160a-ARF8 module. These findings provide new resources to potentially improve disease resistance for breeding in rice.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Melhoramento Vegetal
18.
Rice (N Y) ; 15(1): 40, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876915

RESUMO

Flower opening and stigma exertion are two critical traits for cross-pollination during seed production of hybrid rice (Oryza sativa L.). In this study, we demonstrate that the miR167d-ARFs module regulates stigma size and flower opening that is associated with the elongation of stamen filaments and the cell arrangement of lodicules. The overexpression of miR167d (OX167d) resulted in failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule, resulting in cleistogamy. Blocking miR167d by target mimicry also led to a morphological alteration of the individual floral organs, including a reduction in stigma size and alteration of lodicule cell morphology, but did not show the cleistogamous phenotype. In addition, the four target genes of miR167d, namely ARF6, ARF12, ARF17, and ARF25, have overlapping functions in flower opening and stigma size. The loss-of-function of a single ARF gene did not influence the flower opening and stigma size, but arf12 single mutant showed a reduced plant height and aborted apical spikelets. However, mutation in ARF12 together with mutation in either ARF6, ARF17, or ARF25 led to the same defective phenotypes that were observed in OX167d, including the failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule. These findings indicate that the appropriate expression of miR167d is crucial and the miR167d-ARFs module plays important roles in the regulation of flower opening and stigma size in rice.

19.
ACS Appl Mater Interfaces ; 14(30): 34686-34696, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876499

RESUMO

Structural instability is a major obstacle to realizing the high performance of a MnO2-based pseudocapacitor material. Understanding its structure transformation in the process of electrochemical reaction, therefore, plays an important role in the efficient enhancement of rate capacity and stability. Herein, a stable MnO2@rGO core-shell nanosphere is first synthesized by a liquid-liquid interface deposition further combined with the electrostatic self-assembly method. The structural transformation process of the MnO2@rGO electrode is monitored by ex situ Raman and X-ray diffraction spectroscopy during the charging-discharging process. It is found in the first discharging process that layered-MnO2 transforms into the spinel-Mn3O4 phase with K+ ion intercalation. From the second charging, the spinel-Mn3O4 phase is gradually adjusted to a more stable λ-MnO2 with a three-dimensional tunnel structure, finally realizing the reversible intercalation/deintercalation of K+ ions in the λ-MnO2 tunnel structure during subsequent cycling, which can be attributed to the presence of oxygen vacancies formed by the lengthening of the Mn-O bond and losing oxygen in the MnO6 octahedral unit with K+ ion intercalation/deintercalation. Meanwhile, the MnO2@rGO electrode demonstrates a high specific capacitance of 378 F g-1 at 1 A g-1 and excellent cycling stability with a capacitance retention of up to 89.5% after 10 000 cycles at 10 A g-1. Furthermore, the assembled symmetric micro-supercapacitor delivers a high areal energy density of 1.01 µWh cm-2, superior cycling stability with no significant capacity decay after 8700 cycles, and a capacity retention rate of almost 100% after 2000 bending cycles, showing great mechanical flexibility and practicability.

20.
Front Plant Sci ; 13: 788876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498644

RESUMO

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA