Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 13114-13131, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427459

RESUMO

Extensive utilization in various settings poses extra requirements of coatings beyond just anticorrosion properties. Herein, 8-hydroxyquinoline (8-HQ) intercalated CaAl-based layered double hydroxide (CaAl-8HQ-LDH) was loaded on reduced GO (rGO) through a one-pot hydrothermal reaction, which was employed as the nanofiller endowing the epoxy (EP/CaAl-8HQ LDH@rGO) with excellent flame-retardancy while ensuring efficient protection for mild steel. Results of electrochemical impedance spectroscopy (EIS) demonstrated the durability of the EP/CaAl-8HQ LDH@rGO-coated specimen, with the impedance at the lowest frequency (|Z|0.01Hz) maintained as 1.84 × 1010 Ω cm2 after 120 days of immersion in a 3.5 wt % NaCl solution. Even for the scratched EP/CaAl-8HQ LDH@rGO system, only a slight decline in |Z|0.01Hz was observed during 180 h of exposure to the NaCl solution, indicating a self-healing feature supported by salt spray tests. UL-94 burning tests revealed the V-0 rating for EP/CaAl-8HQ LDH@rGO with improved thermostability. Strong physical barrier from two-dimensional rGO and the release of 8-HQ from LDH interlayers accounted for the anticorrosive and self-healing properties. However, O2-concentration dilution and charring-layer promotion governed the flame-retardant behavior of the nanocomposite coating. The intercomponent synergy of nanofillers achieved in this work may provide a useful reference for designing multifunctional coatings.

2.
Materials (Basel) ; 15(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329481

RESUMO

In this study, dense anticorrosion magnesium-aluminum layered double hydroxide (MgAl-LDH) films were prepared for the first time by introducing a cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in the process of in situ hydrothermal synthesis of Mg-Al LDH films on an AZ31 magnesium alloy. Results of XRD, FTIR, and SEM confirmed that TTAB forms the MgAl-LDH-TTAB, although TTAB cannot enter into LDH layers, and MgAl-LDH-TTAB powders are much smaller and more homogenous than MgAl-CO32--LDH powders. Results of SEM, EDS, mapping, and XPS confirmed that TTAB forms the MgAl-LDH-TTAB films and endows LDH films with denser structure, which provides films with better shielding efficiency. Results of potentiodynamic polarization curves (PDP) and electrochemical impedance spectroscopy (EIS) confirmed that MgAl-LDH-TTABx g films have better corrosion resistance than an MgAl-CO32--LDH film. The corrosion current density (icorr) of the MgAl-LDH-TTAB0.35 g film in 3.5 wt.% NaCl solution was reduced to 1.09 × 10-8 A.cm-2 and the |Z|f = 0.05 Hz value was increased to 4.48 × 105 Ω·cm2. Moreover, the increasing concentration of TTAB in MgAl-LDH-TTABx g (x = 0.025, 0.05, 0.1, 0.2 and 0.35) provided denser outer layer LDH films and thereby increased the corrosion resistance of the AZ31 Mg alloy. Additionally, the |Z|f = 0.05 Hz values of the MgAl-LDH-TTAB0.35 g film still remained at 105 Ω·cm2 after being immersed in 3.5 wt.% NaCl solution for 168 h, implying the good long-term corrosion resistance of MgAl-LDH-TTABx g films. Therefore, introducing cationic surfactant in the process of in situ hydrothermal synthesis can be seen as a novel approach to creating efficient anticorrosion LDH films for Mg alloys.

3.
Luminescence ; 35(6): 885-890, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32145137

RESUMO

In this study, UV-visible light spectrophotometry was used for the first time to examine the migration behaviours of cationic and nonionic imidazoline corrosion inhibitors in concrete. Imidazoline can react with bromocresol purple resulting in a reduction in absorbance, which can be used to calculate quantitatively imidazoline concentration. The results showed that the migration rate of nonionic imidazoline was faster than that of cationic imidazoline with or without the presence of an electric field, possibly because of the better water solubility of nonionic imidazoline. The electric field could significantly accelerate the migration rate of the cationic and nonionic imidazoline. However, the penetration performance of nonionic imidazoline was much improved compared with that of cationic imidazoline in concrete. From X-ray photoelectron spectroscopy analysis, the N element could be detected on steel, verifying the migration behaviour of the nonionic imidazoline. This nonionic imidazoline could markedly retard steel corrosion according to potentiodynamic polarization.


Assuntos
Imidazolinas , Corrosão , Espectrofotometria , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA