Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Environ Sci (China) ; 133: 93-106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451793

RESUMO

The Beijing "Coal to Electricity" program provides a unique opportunity to explore air quality impacts by replacing residential coal burning with electrical appliances. In this study, the atmospheric ROS (Gas-phase ROS and Particle-phase ROS, abbreviated to G-ROS and P-ROS) were measured by an online instrument in parallel with concurrent PM2.5 sample collections analyzed for chemical composition and cellular ROS in a baseline year (Coal Use Year-CUY) and the first year following implementation of the "Coal to Electricity" program (Coal Ban Year-CBY). The results showed PM2.5 concentrations had no significant difference between the two sampling periods, but the activities of G-ROS, P-ROS, and cellular ROS in CBY were 8.72 nmol H2O2/m3, 9.82 nmol H2O2/m3, and 2045.75 µg UD /mg PM higher than in CUY. Six sources were identified by factor-analysis from the chemical components of PM2.5. Secondary sources (SECs) were the dominant source of PM2.5 in the two periods, with 15.90% higher contribution in CBY than in CUY. Industrial Emission & Coal Combustion sources (Ind. & CCs), mainly from regional transport, also increased significantly in CBY. The contributions of Aged Sea Salt & Residential Burning sources to PM2.5 decreased 5.31% from CUY to CBY. The correlation results illustrated that Ind. & CCs had significant positive correlations with atmospheric ROS, and SECs significantly associated with cellular ROS, especially nitrates (r = 0.626, p = 0.000). Therefore, the implementation of the "Coal to Electricity" program reduced PM2.5 contributions from coal and biomass combustion, but had little effect on the improvement of atmospheric and cellular ROS.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Pequim , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Peróxido de Hidrogênio , Material Particulado/análise , Espécies Reativas de Oxigênio , Emissões de Veículos/análise
2.
Environ Res ; 212(Pt D): 113452, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597294

RESUMO

Consecutive measurements of ambient fine particulate matter (PM2.5) from February 2016 to April 2018 have been performed at four representative sites of Beijing to evaluate the impact of "2 + 26" regional strategies implemented in 2017 for air quality improvement in non-heating period (2017NH) and heating period (2017H). The decrease of PM2.5 were significant both in 2017NH (20.2% on average) and 2017H (43.7% on average) compared to 2016NH and 2016H, respectively. Eight sources were resolved at each site from the PMF source apportionment including secondary nitrate, traffic, coal combustion, soil dust, road dust, sulfate, biomass/waste burning and industrial process. The results show that the reductions of industrial process, soil dust, and coal combustion were most effective among all sources at each site after the regional strategies implementation with the large reductions in potential source areas. The decrease of coal combustion in 2017NH were larger than 2017H at all sites while that of soil dust and industrial sources were the opposite. Insignificant reduction of coal combustion contribution at the suburban site in the heating period indicated that rural residential coal burning need further control. The industrial source control in the suburbs were least effective compared with other districts. Traffic was the largest contributer at each site and control of traffic emissions were more effective in 2017H than 2017NH. The local nature and increase of biomass/waste burning contributions emphasized the effect of fireworks and bio-fuel use in rural areas and incinerator emissions in urban districts. Secondary nitrate and sulfate were mainly impacted by the regional transport from southern adjacent areas and favorable meteorological conditions played an important part in the PM2.5 abatements of 2017H. Secondary nitrate became a more major role in the air pollution process because of the larger decrease of sulfate. Finally suggestions for future control are made in this study.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Pequim , China , Carvão Mineral/análise , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos , Material Particulado/análise , Melhoria de Qualidade , Estações do Ano , Solo , Sulfatos , Emissões de Veículos/análise
3.
Braz. j. microbiol ; 48(3): 442-450, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889132

RESUMO

Abstract Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG), "Yilezai" (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2 ppm and that of H2S reduced from 0.7 to 0.2 ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.


Assuntos
Bactérias/metabolismo , Verduras/microbiologia , Eliminação de Resíduos/métodos , Fungos/metabolismo , Verduras/metabolismo , Biodegradação Ambiental
4.
Braz J Microbiol ; 48(3): 442-450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28279600

RESUMO

Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG), "Yilezai" (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2ppm and that of H2S reduced from 0.7 to 0.2ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Eliminação de Resíduos/métodos , Verduras/microbiologia , Biodegradação Ambiental , Verduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA