Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Neurosurg ; : 1-7, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34612789

RESUMO

PURPOSE: The occiput-axis crossing translaminar screw (C2LAM) fixation technique can help avoid vertebral injury, while the inclusion of offset connectors can facilitate implantation. This three-dimensional finite element (FE) study compared the stability of C2LAM using offset connectors (C2LAM + OF) with other methods. MATERIALS AND METHODS: Occipital and cervical spine computed tomography images of a healthy 30-year-old man were selected to build the FE model. Four internal fixation instruments including occiput plate-C2 pedicle (C2P) and pars (C2Pars) screws, as well as C2LAM and C2LAM + OF were applied consecutively to the model respectively to establish four new models, which were subjected to all states of motion and physiological loads to simulate normal movement, including the four kinds of basic activities of human such as flexion, extension, lateral bending, and axial rotation. Physiological measures and comparison included the range of motion (ROM) and stress distribution in the model. RESULTS: ROM between the fixation techniques was comparable, and the stability of the C2LAM + OF fixation technique was similar to that of C2P. Screw entry points, offset connectors and rods were the main stress distribution regions in the C2LAM + OF system. The mean von Mises stress of the inner wall was significantly smaller than that of the outer wall in flexion, extension, and rotation (p < 0.05); however, lateral bending was comparable, indicating a relatively small risk of damage to the inner wall. CONCLUSIONS: The results of this study indicate that the C2LAM + OF fusion technique can provide sufficient stability and can be used as an alternative to C2P under special circumstances.

2.
Clin Neurol Neurosurg ; 169: 49-54, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627641

RESUMO

OBJECTIVE: Fixation with the axis vertebra (C2) using pedicle screws is commonly used to treat an unstable occipitocervical junction; however, it is accompanied by a risk of vertebral artery injury. The occiput-C2 (OC2) crossing translaminar screw fixation technique may avoid this risk, but rod implantation is difficult. Offset connectors can help facilitate this construct. This study aimed to evaluate the stability of a technique for OC2 crossing translaminar screw fixation using offset connectors (C2LAM + OF) in comparison with other methods. PATIENTS AND METHODS: Six fresh-frozen human cadaveric occipital-cervical spines were tested intact under flexion, extension, lateral bending, and axial rotation. These were then made into a type II odontoid fracture model, instrumented with an occipital plate, and tested in the following modes: C2 bilateral pedicle screws (C2P), a single C2 pedicle screw and bilateral C3 lateral mass screws (C2P + C3M), C2 crossing translaminar screws (C2LAM), and C2LAM + OF. The OC2 range of motion (ROM) for each construct was obtained and compared using a repeated-measures analysis. RESULTS: The ROM of the C2LAM + OF construct was found not to be significantly different from that of the C2P and C2P + C3M fixations in every direction (p > 0.05). However, the C2LAM + OF construct was superior to the C2LAM construct in axial rotation (p < 0.05). CONCLUSIONS: OC2 crossing translaminar screw fixation using offset connectors offers similar stability to C2 pedicle screw fixation and is an effective alternative method for treating an unstable occipitocervical junction.


Assuntos
Vértebra Cervical Áxis/diagnóstico por imagem , Vértebra Cervical Áxis/fisiologia , Osso Occipital/diagnóstico por imagem , Osso Occipital/fisiologia , Parafusos Pediculares , Fusão Vertebral/instrumentação , Vértebra Cervical Áxis/patologia , Vértebra Cervical Áxis/cirurgia , Fenômenos Biomecânicos/fisiologia , Cadáver , Humanos , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/patologia , Instabilidade Articular/cirurgia , Osso Occipital/patologia , Osso Occipital/cirurgia , Fusão Vertebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA