Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Death Dis ; 14(5): 298, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127752

RESUMO

Bone metastasis is one of the main complications of lung cancer and most important factors that lead to poor life quality and low survival rate in lung cancer patients. However, the regulatory mechanisms underlying lung cancer bone metastasis are still poor understood. Here, we report that microRNA-182 (miR-182) plays a critical role in regulating osteoclastic metastasis of lung cancer cells. We found that miR-182 was significantly upregulated in both bone-metastatic human non-small cell lung cancer (NSCLC) cell line and tumor specimens. We further demonstrated that miR-182 markedly enhanced the ability of NSCLC cells for osteolytic bone metastasis in nude mice. Mechanistically, miR-182 promotes NSCLC cells to secrete Interleukin-8 (IL-8) and in turn facilitates osteoclastogenesis via activating STAT3 signaling in osteoclast progenitor cells. Importantly, systemically delivered IL-8 neutralizing antibody inhibits NSCLC bone metastasis in nude mice. Collectively, our findings identify the miR-182/IL-8/STAT3 axis as a key regulatory pathway in controlling lung cancer cell-induced osteolytic bone metastasis and suggest a promising therapeutic strategy that targets this regulatory axis to interrupt lung cancer bone metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Interleucina-8/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , MicroRNAs/metabolismo , Metástase Neoplásica
2.
Heliyon ; 8(11): e11339, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387507

RESUMO

Objectives: The capacity of QuantStudio™ 3D (QS3D) and droplet digital PCR (dPCR) for the detection of plasma Epidermal Growth Factor Receptor (EGFR) mutations have been widely reported. Few comparative studies on the quantitative test of the identical DNA material, however, are carried out. Here we compared the performance of the two methods in detecting EGFR T790M mutation in cell-free DNA (cfDNA) from the same lung cancer patients. Methods: We recruited 72 non-small cell lung cancer (NSCLC) patients who initially respond to tyrosine kinase inhibitor treatment but subsequently developed resistance. Two tubes of 10mL anticoagulant blood were collected and cfDNA was isolated from plasma. Identical cfDNA samples were analyzed for T790M mutation using QS3D and droplet dPCR in parallel. Results: T790M mutation was detected in 15 and 21 cfDNA samples by QS3D and droplet digital PCR, respectively. The 6 discordant samples showed low mutation abundance (∼0.1%) and the discrepancy is caused by the stricter threshold settings for QS3D dPCR. The overall agreement between the two methods was 91.7% (66/72). The median allele frequencies for QS3D dPCR and droplet dPCR to detect T790M mutation was 2.01% and 2.62%, respectively. There was no significance in mutation abundance detected by both methods. Both methods are highly correlated with allele frequencies and copy numbers in T790M wild type and mutant, with R2 of 0.98, 0.92 and 0.95, respectively. Conclusion: Our study demonstrated that QS3D dPCR are highly consistent with droplet PCR for quantitative determination of EGFR T790M mutation in plasma cfDNA.

3.
Adv Sci (Weinh) ; 9(34): e2203786, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257825

RESUMO

Identification of novel non-invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle-based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi-modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule. The dual modal model, metabolic fingerprints with protein tumor marker neural network (MP-NN), integrating SMFs with protein tumor marker carcinoembryonic antigen (CEA) via deep learning, shows superior performance compared with the single modal model Met-NN (p < 0.001). Based on MP-NN, the tri modal model MPI-RF integrating SMFs, tumor marker CEA, and image features via random forest demonstrates significantly higher performance than the clinical models (Mayo Clinic and Veterans Affairs) and the image artificial intelligence in pulmonary nodule classification (p < 0.001). The developed platforms would be promising tools for LUAD screening and pulmonary nodule management, paving the conceptual and practical foundation for the clinical application of omics tools.


Assuntos
Adenocarcinoma de Pulmão , Inteligência Artificial , Estados Unidos , Humanos , United States Government Agencies , Adenocarcinoma de Pulmão/diagnóstico , Diagnóstico Precoce , Biomarcadores Tumorais
4.
Exp Cell Res ; 408(1): 112834, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537206

RESUMO

Aberrant activity of bone resorbing osteoclasts plays a key role in the development of osteoporosis and cancer bone metastasis. The identification of novel and specific targets will be helpful for the development of new therapeutic strategies for bone metastasis in lung cancer. Herein, we examined microRNAs in tumor cell-derived exosomes to investigate the communication between the bone environment and tumor cells. TCGA database analysis showed that the level of miR-17-5p increased in non-small cell lung cancer tissues compared with non-tumor tissues. To investigate the function of exosomes in inducing osteoclastogenesis, osteoclast precursors were incubated with exosomes isolated from non-small cell lung cancer cell line, as well as receptor activator of NF-KB ligand and M-CSF to induce osteoclastogenesis. We found that exosomal miR-17-5p is upregulated in a non-small cell lung cancer cell line with bone metastasis compared with the original cell line. Overexpression of miR-17-5p enhanced the osteoclastogenesis of RAW264.7 cells. PTEN was identified as a direct target of miR-17-5p and showed negative effects on osteoclastogenesis. Importantly, treatment of LY294002 (an inhibitor of the PI3K/Akt pathway) attenuated miR-17-5p-mediated osteoclastogenesis effects. Taken together, our findings demonstrated that miR-17-5p promotes osteoclastogenesis through the PI3K/Akt pathway via targeting PTEN in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/farmacologia , PTEN Fosfo-Hidrolase/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , PTEN Fosfo-Hidrolase/genética , Regulação para Cima/efeitos dos fármacos
5.
Scand J Clin Lab Invest ; 81(4): 276-281, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33999736

RESUMO

Circulating tumor DNA (ctDNA), a fraction of cell-free DNA (cfDNA) in the circulatory system, is released from tumor cells and thus carries tumor-specific genetic signatures. Using blood-derived ctDNA to detect somatic mutations has shown great value in guiding cancer targeted therapy. Isolation and detection efficiencies are the key factors affecting the performance of ctDNA detection. To optimize and standardize our clinical practice, in this study, we analyzed the isolation efficiency of four commercial cfDNA purification kits: QIAamp circulating nucleic acid kit, AmoyDx® Circulating DNA kits, Microdiag® circulating DNA isolation kit, and MagMAX cell-free DNA isolation kit; and the detection efficiency of two mainstream domestic EGFR gene mutation detection kits: MicroDiag EGFR gene mutation detection kit and Fluorometric real-time PCR Detection Kit for the analysis of EGFR gene mutations. Reference materials and plasma samples collected from lung cancer patients and healthy volunteers were used for the analysis. Our results showed that QIAamp circulating nucleic acid kit and Microdiag® circulating DNA kit had the highest recovery rate (up to 21.25 ng/mL) for short DNA fragments of about 173 bp which is the peak length of ctDNA. For ctDNA detection, the MicroDiag® EGFR gene mutation detection kit showed the highest detection rate and sensitivity for detecting EGFR mutations at a mutant frequency of 0.5%. This work provides a reliable choice of commercial kits for the clinical application of ctDNA.


Assuntos
DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/isolamento & purificação , Kit de Reagentes para Diagnóstico , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Mutação , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
J Cancer ; 11(7): 1959-1967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194807

RESUMO

Accumulating evidences showed that aberrantly expressed long noncoding RNAs (lncRNAs) have critical roles in many cancers. However, the expression and roles of a poorly studied lncRNA PCNA-AS1 in non-small-cell lung cancer (NSCLC) remain unknown. In this study, we investigated the expression, clinical significance, biological roles, and functional mechanism of PCNA-AS1 in NSCLC. Our results showed that PCNA-AS1 was upregulated in NSCLC tissues and cell lines, and correlated with TNM stages. Functional experiments showed that overexpression of PCNA-AS1 promoted NSCLC cell proliferation and cell cycle progression. Depletion of PCNA-AS1 inhibited NSCLC cell proliferation and cell cycle progression, and also inhibited NSCLC tumor growth in vivo. Mechanistically, we found that PCNA-AS1 upregulated CCND1 expression. The expression of PCNA-AS1 was positively correlated with that of CCND1 in NSCLC tissues. Moreover, depletion of CCND1 abrogated the oncogenic roles of PCNA-AS1 in NSCLC. In conclusion, highly expressed PCNA-AS1 promotes NSCLC cell proliferation and oncogenic activity via upregulating CCND1. Our results imply that PCNA-AS1 might serve as a therapeutic target for NSCLC.

7.
J Cancer ; 10(18): 4341-4349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413754

RESUMO

Purpose: The clinical utility of cell-free DNA (cfDNA) to assess EGFR mutations is increasing. However, there are limited studies determining their clinical validity and utility. The value of cfDNA assays in cancer management remains controversial. Methods: In this study, we first evaluated the analytical performance of the ddPCR Lung cfDNA Assay. We next analyzed the concordance of the results with tissue amplification refractory mutation system PCR (ARMS-PCR) and plasma next-generation sequencing (NGS) genotyping. Finally, we assessed its clinical utility by exploring the association of cfDNA EGFR mutations with metastatic sites and the efficacy of EGFR-TKIs treatment. Results: The ddPCR Lung cfDNA Assay demonstrated a limit of blank of 1 droplet per reaction, an analytical specificity of 100%, and detection limit of 0.05%, 0.05%, and 0.1% for E746_A750del, L858R, and T790M, respectively. With tissue ARMS-PCR as a standard for comparison, the clinical sensitivity and specificity of ddPCR were 62.5% (15/24) and 100% (82/82) for E746_A750del, and 75.0% (15/20) and 94.2% (81/86) for L858R, respectively. The ddPCR showed high concordance with NGS in determining cfDNA EGFR mutations. Patients with bone and/or brain metastasis showed a higher detection rate and mutant abundance of cfDNA EGFR mutations compared to those with other sites of metastasis. Moreover, EGFR-TKIs treatment was effective in patients with sensitive EGFR mutations in either plasma cfDNA or tumor tissue-derived DNA. Conclusions: We validated in this study that the ddPCR Lung cfDNA Assay is reliable for detection of EGFR mutations in lung cancers, in terms of analytical performance, clinical validity and utility.

8.
J Cancer ; 8(17): 3585-3591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151944

RESUMO

Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer.

9.
Lung Cancer ; 114: 31-37, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29173762

RESUMO

OBJECTIVES: EGFR mutation is a key factor to predict EGFR-TKI efficacy. However, a significant number of advanced patients do not have sufficient tumor specimens for molecular testing. Also, there is a lack of quantitative assay to analyze the mutant abundance. This study aims to evaluate the detection efficiency and clinical feasibility of a new platform, namely ARMS-Plus, for the detection and quantification of EGFR mutations in plasma. MATERIALS AND METHODS: The detection limit of ARMS-Plus was assessed by detecting spiked mutant plasmids which were serially diluted with normal human genomic DNA. The cutoff values were defined by examining the mutant copy numbers presented in 134 healthy controls. Plasma samples from 65 lung cancer patients were collected to evaluate the clinical performance of ARMS-Plus. EGFR mutations were concurrently tested by droplet digital PCR (ddPCR) for the plasma samples and conventional amplification refractory mutation system-PCR (ARMS-PCR) for the matched tumor tissue specimens to serve as a standard for comparison. RESULTS: In this study, the analytical sensitivity of ARMS-Plus was 0.015%. The cutoff values of EGFR 19Del, L858R, T790M mutations were defined as 2, 5, and 3 copies/mL, respectively. With tumor specimens as the standard, the sensitivity, specificity, and concordance rate of ARMS-Plus and ddPCR were 60.7%, 94.6%, and 80.0%; and 50.0%, 97.3%, and 76.9%, respectively. For quantification, the plasma 19Del and L858R mutant abundance detected by ARMS-Plus and ddPCR were consistent (Spearman R=0.7956 and 0.7710, P<0.0001). CONCLUSION: ARMS-Plus is a reliable, convenient and cost-effective method for the detection and quantification of plasma EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA de Neoplasias/sangue , Progressão da Doença , Receptores ErbB/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-28469997

RESUMO

Escherichia coli-induced meningitis remains a life-threatening disease despite recent advances in the field of antibiotics-based therapeutics, necessitating continued research on its pathogenesis. The current study aims to elucidate the mechanism through which hemolysin-coregulated protein 1 (Hcp1) induces the apoptosis of human brain microvascular endothelial cells (HBMEC). Co-immunoprecipitation coupled with mass spectrometric (MS) characterization led to the identification of IQ motif containing GTPase activating protein 1 (IQGAP1) as a downstream target of Hcp1. IQGAP1 was found to be up-regulated by Hcp1 treatment and mediate the stimulation of HBMEC apoptosis. It was shown that Hcp1 could compete against Smurf1 for binding to IQGAP1, thereby rescuing the latter from ubiquitin-dependent degradation. Subsequent study suggested that IQGAP1 could stimulate the MAPK signaling pathway by promoting the phosphorylation of ERK1/2, an effect that was blocked by U0126, an MAPK inhibitor. Furthermore, U0126 also demonstrated therapeutic potential against E. coli meningitis in a mouse model. Taken together, our results suggested the feasibility of targeting the MAPK pathway as a putative therapeutic strategy against bacterial meningitis.


Assuntos
Proteínas de Escherichia coli/farmacologia , Escherichia coli/metabolismo , Meningite devida a Escherichia coli/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fatores de Virulência/farmacologia , Proteínas Ativadoras de ras GTPase/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encéfalo , Butadienos/antagonistas & inibidores , Linhagem Celular , Citocinas/análise , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Meningite devida a Escherichia coli/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/antagonistas & inibidores , Fosforilação , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases , Regulação para Cima
11.
J Cancer ; 8(1): 104-110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28123603

RESUMO

Background: As the heterogeneity of CTCs is becoming increasingly better understood, it is clear that identifying particular subtypes of CTCs would be more relevant. Methods: We detected folate receptor (FR)-positive circulating tumor cells (FR+-CTCs) by a novel ligand-targeted polymerase chain reaction (LT-PCR) detection technique. Results: In the none-dynamic study, FR+-CTC levels of patients with lung cancer were significantly higher than controls (patients with benign lung diseases and healthy controls). With a threshold of 8.7 CTC units, FR+-CTC showed a sensitivity of 77.7% and specificity of 89.5% in the diagnosis of lung cancer. When compared with established clinical biomarkers including carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and neuron-specific enolase (NSE), FR+-CTC showed the highest diagnostic efficiency. Notably, the combination of FR+-CTC, CEA, NSE, and CYFRA21-1 could significantly improve the diagnostic efficacy in differentiating patients with lung cancer from benign lung disease. In our dynamic surveillance study, the CTC levels of 62 non-small cell lung cancer (NSCLC) patients decreased significantly after tumor resection. Conclusion: We established a LT-PCR-based FR+-CTC detection platform for patients with lung cancer that exhibits high sensitivity and specificity. This platform would be clinical useful in lung cancer diagnosis and treatment response assessment.

12.
J Microbiol Biotechnol ; 26(3): 588-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26628252

RESUMO

IFN-γ release assays (IGRAs) have been developed as viable alternative diagnostic tools for detecting latent tuberculosis infection (LTBI). A customized homogeneous sandwich luminescent oxygen channeling immunoassay (LOCI) was used to quantify IFN-γ levels in IGRAs. Samples were collected from healthy volunteers (n = 40) who were T-Spot-negative and T-Spot-positive patients (n = 32) at rest. Then the amount of IFN-γ in the supernatant of IGRAs was measured by LOCI. The results demonstrated a low background, and high sensitivity, specificity, accuracy, and reproducibility, and a short assay time (only 30 min) with LOCI for IFN-γ. The recovery range was 81.63-102.06%, the coefficients of variation were below 5%, and the limit of detection was 19.0 mIU/ml. Excellent agreement between LOCI IFN-γ and the T-SPOT.TB test was obtained (97.2% agreement, κ = 0.94). The LOCI IFN-γ concentrations were significantly higher in T-Spot-positive patients than in the healthy group (p < 0.001). Moreover, as observed for the comparative LOCI IFN-γ assay, IFN-γ concentrations were related to the numbers of T-SPOT.TB spots. We have established an in vitro blood test for LTBI diagnosis, defined as LOCI IFN-γ. A high level of agreement between the LOCI IFN-γ method and T-SPOT.TB assay was observed in clinical studies that showed the LOCI IFN-γ method could determine LTBI. This study shows acceptable performance characteristics of the LOCI IFN-γ assay to diagnose LTBI.


Assuntos
Imunoensaio/métodos , Interferon gama/sangue , Tuberculose Latente/sangue , Adulto , Idoso , Feminino , Humanos , Tuberculose Latente/diagnóstico , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA