Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 26(22): 4711-4715, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38809207

RESUMO

The Catellani reaction offers an opportunity to address multiple chemical bonds in a single pot. However, it is still quite a challenge to construct fully substituted olefins via this strategy, especially in electron-rich, unstable, and highly functionalized glycals. Herein we report the first palladium-catalyzed Catellani reaction for the direct preparation of 1,2-disubstituted C-aryl glycosides from easily available 2-iodoglycals, bromoaryl, and alkene/alkyne substrates. This transformation exhibits a wide substrate scope, accommodating diverse functional groups and intricate molecular frameworks. This innovative reactivity offers an efficient pathway to valuable 1,2-disubstituted carbohydrate analogues and molecular building blocks, facilitating novel strategic bond disconnections and broadening the reactivity landscape of palladium catalysis.

2.
J Org Chem ; 89(7): 4349-4365, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38497642

RESUMO

The 5-fluoroalkyl-1,2,3-triazoles, serving as a pivotal element in medicinal chemistry, hold substantial research significance. In this work, we developed a furan dearomatization reaction for the synthesis of various 5-fluoroalkyl-1,2,3-triazoles, which contains -CF3, -CF2H, -CF2CF3, -CF2CF2CF3, -CF2CO2Et, and -C6F5. This methodology relies on the intermolecular [3 + 2] cycloaddition/furan ring-opening triggered by α-fluoroalkyl furfuryl cation with azides to stereoselectively synthesize a series of (E)-fluoroalkyl enone triazoles. The reaction proceeds without metal participation, exhibits excellent substrate tolerance, and has excellent synthetic utility.

3.
Angew Chem Int Ed Engl ; 63(1): e202313336, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983653

RESUMO

The precise control of the regioselectivity in the transition metal-catalyzed migratory hydrofunctionalization of alkenes remains a big challenge. With a transient ketimine directing group, the nickel-catalyzed migratory ß-selective hydroarylation and hydroalkenylation of alkenyl ketones has been realized with aryl boronic acids using alkyl halide as the mild hydride source for the first time. The key to this success is the use of a diphosphine ligand, which is capable of the generation of a Ni(II)-H species in the presence of alkyl bromide, and enabling the efficient migratory insertion of alkene into Ni(II)-H species and the sequent rapid chain walking process. The present approach diminishes organosilanes reductant, tolerates a wide array of complex functionalities with excellent regioselective control. Moreover, this catalytic system could also be applied to the migratory hydroarylation of alkenyl azahetereoarenes, thus providing a general approach for the preparation of 1,2-aryl heteroaryl motifs with wide potential applications in pharmaceutical discovery.

4.
Org Lett ; 25(21): 3859-3863, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37212832

RESUMO

The development and the synthetic applications of a novel class of diphosphine ligands (SPSiPs) based on chiral spirosilabiindane diol (SPSiOL) are presented. Starting from SPSiOL, the diphosphine ligands could be readily prepared in three steps with high efficiency. This novel class of diphosphine ligands features rigid configuration, a large dihedral angle, a large P-M-P angle, and a long P-P distance. The potentials of SPSiPs in asymmetric catalysis have also been preliminarily disclosed.

5.
J Org Chem ; 87(15): 10185-10198, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35864566

RESUMO

A dearomative dimerization of furfuryl azides for the construction of furfuryl triazoles is developed. As a rare leaving group, azide is capable of initiating the generation of a furfuryl cation under the Lewis acid-catalyzed conditions, followed by reacting with the other azide to realize an intermolecular [3 + 2] cycloaddition/furan ring-opening cascade. By extending the reaction time, a fragmentation reaction of resulting furfuryl triazoles occurs to afford 1H-triazoles in high yield. Control studies demonstrated that key furfuryl cations also can be obtained from furfuryl triazoles. Furthermore, a chemoselective cross-cycloaddition can be achieved between furfuryl azides and a benzyl azide.


Assuntos
Alcinos , Azidas , Catálise , Reação de Cicloadição , Dimerização , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA