Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(21): 219702, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295096
2.
Electrophoresis ; 44(15-16): 1210-1219, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37075199

RESUMO

Wear debris analysis provides an early warning of mechanical transmission system aging and wear fault diagnosis, which has been widely used in machine health monitoring. The ability to detect and distinguish the ferromagnetic and nonmagnetic debris in oil is becoming an effective way to assess the health status of machinery. In this work, an Fe-poly(dimethylsiloxane) (PDMS)-based magnetophoretic method for the continuous separation of ferromagnetic iron particles by diameter and the isolation of ferromagnetic particles and nonmagnetic particles with similar diameter by type is developed. The particles experience magnetophoretic effects when passing through the vicinity of the Fe-PDMS where the strongest gradient of the magnetic fields exists. By choosing a relatively short distance between the magnet and the sidewall of the horizontal main channel and the length of Fe-PDMS with controlled particles flow rate, the diameter-dependent separation of ferromagnetic iron particles, that is, smaller than 7 µm, in the range of 8-12 µm, and larger than 14 µm, and the isolation of ferromagnetic iron particles and nonmagnetic aluminum particles based on opposite magnetophoretic behaviors by types are demonstrated, providing a potential method for the detection of wear debris particles with a high sensitivity and resolution and the diagnostic of mechanical system.


Assuntos
Imãs , Microfluídica , Ferro
3.
Biosensors (Basel) ; 12(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36140142

RESUMO

Identification of circulating tumor cells (CTCs) from a majority of various cell pools has been an appealing topic for diagnostic purposes. This study numerically demonstrates the isolation of CTCs from blood cells by the combination of dielectrophoresis and magnetophoresis in a microfluidic chip. Taking advantage of the label-free property, the separation of red blood cells, platelets, T cells, HT-29, and MDA-231 was conducted in the microchannel. By using the ferromagnet structure with double segments and a relatively shorter distance in between, a strong gradient of the magnetic field, i.e., sufficiently large MAP forces acting on the cells, can be generated, leading to a high separation resolution. In order to generate strong DEP forces, the non-uniform electric field gradient is induced by applying the electric voltage through the microchannel across a pair of asymmetric orifices, i.e., a small orifice and a large orifice on the opposite wall of the channel sides. The distribution of the gradient of the magnetic field near the edge of ferromagnet segments, the gradient of the non-uniform electric field in the vicinity of the asymmetric orifices, and the flow field were investigated. In this numerical simulation, the effects of the ferromagnet structure on the magnetic field, the flow rate, as well as the strength of the electric field on their combined magnetophoretic and dielectrophoretic behaviors and trajectories are systemically studied. The simulation results demonstrate the potential of both property- and size-based cell isolation in the microfluidic device by implementing magnetophoresis and dielectrophoresis.


Assuntos
Técnicas Analíticas Microfluídicas , Separação Celular , Eletroforese , Dispositivos Lab-On-A-Chip , Microfluídica
4.
Environ Pollut ; 297: 118773, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974085

RESUMO

Microplastics (<5 mm) are divided into primary and secondary microplastics, which are further degraded into nanoplastics. The microplastic particles are widely distributed in marine environment, terrestrial ecosystem and biological organism, leading to damages to whole environmental system. Microplastics are not only difficult to degrade, but also able to adsorb pollutants. Due to the tiny size and various properties, the separation and characterization of microplastic particles has become more and more challenging. This review introduces the sources and destinations of the microplastic particles and summarizes the general methods for the sorting and characterization of microplastics, especially the manipulation of microplastic particles on microfluidic chip, showing possibility to deal with smaller nanoplastic particles over traditional methods. This review focuses on studies of the size-based separation and property-dependent characterization of microplastics in marine environment by utilizing the microfluidic chip device.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
5.
Phys Rev Lett ; 127(17): 176601, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739297

RESUMO

Topological insulators (TIs) are an exciting discovery because of their robustness against disorder and interactions. Recently, second-order TIs have been attracting increasing attention, because they host topologically protected 1D hinge states in 3D or 0D corner states in 2D. A significantly critical issue is whether the second-order TIs also survive interactions, but it is still unexplored. We study the effects of weak Coulomb interactions on a 3D second-order TI, with the help of renormalization-group calculations. We find that the 3D second-order TIs are always unstable, suffering from two types of topological phase transitions. One is from second-order TI to TI, the other is to normal insulator. The first type is accompanied by emergent time-reversal and inversion symmetries and has a dynamical critical exponent κ=1. The second type does not have the emergent symmetries but has nonuniversal dynamical critical exponents κ<1. Our results may inspire more inspections on the stability of higher-order topological states of matter and related novel quantum criticalities.

6.
Phys Rev Lett ; 127(4): 046602, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355953

RESUMO

Metal-insulator transitions driven by magnetic fields have been extensively studied in 2D, but a 3D theory is still lacking. Motivated by recent experiments, we develop a scaling theory for the metal-insulator transitions in the strong-magnetic-field quantum limit of a 3D system. By using a renormalization-group calculation to treat electron-electron interactions, electron-phonon interactions, and disorder on the same footing, we obtain the critical exponent that characterizes the scaling relations of the resistivity to temperature and magnetic field. By comparing the critical exponent with those in a recent experiment [F. Tang et al., Nature (London) 569, 537 (2019)NATUAS0028-083610.1038/s41586-019-1180-9], we conclude that the insulating ground state was not only a charge-density wave driven by electron-phonon interactions but also coexisting with strong electron-electron interactions and backscattering disorder. We also propose a current-scaling experiment for further verification. Our theory will be helpful for exploring the emergent territory of 3D metal-insulator transitions under strong magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA