Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Cardiovasc Med ; 11: 1383082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529331

RESUMO

Background: The concepts of "individualization" and "preventive treatment" should be incorporated into the precise diagnosis and treatment of coronary heart disease (CHD). Both hemodynamics and Chinese medicine constitution studies align with these two concepts. Methods: This study utilized data from 81 patients with CHD, including 12 patients with balanced constitution (BC), 20 patients with blood stasis constitution (BSC), 17 patients with phlegm-dampness constitution (PDC), 15 patients with qi-deficiency constitution (QDC), and 17 patients with other constitutions. Clinical data provided information on the patients' blood property, heart function, degree of coronary stenosis, coronary hemodynamics, and so on. These parameters were compared between patients with balanced constitution vs. biased constitutions as well as between those with blood stasis constitution, phlegm-dampness constitution, and qi-deficiency constitution. Results: Compared to biased constitution (BC), patients with balanced constitution exhibited lower total cholesterol (TC) levels and low-density lipoprotein (LDL) levels. Additionally, they had lighter stenosis degrees in the Left anterior descending branch (LAD) and Left circumflex branch (LCX) branches. The hemodynamic condition of the LAD and LCX was better for those with balanced constitution; however there was no difference in heart function. Among the groups categorized by blood stasis, phlegm dampness or qi deficiency constituions, patients classified under phlegm dampness had higher levels of LDL compared to those classified under blood stasis or qi deficiency, while patients classified under qi deficiency had higher levels of blood glucose compared to those classified under blood stasis or phlegm dampness. Hemodynamic environments also differed among the LAD and LCX for each group but there were no significant differences observed in heart function or degree of coronary stenosis among these three groups. Conclusion: The balanced constitution demonstrates superior blood property, degree of coronary artery stenosis, and coronary hemodynamics compared to the biased constitution. Furthermore, among the three constitutions with CHD, variations in blood property and certain hemodynamic parameters are observed. These findings emphasize the significant clinical value of incorporating physical factors into the diagnosis and treatment of patients with CHD.

2.
Foods ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397603

RESUMO

The oligosaccharides extracted from the seeds of peas, specifically consisting of raffinose, stachyose, and verbascose, fall under the category of raffinose family oligosaccharides (RFOs). The effect of RFOs on intestinal microflora and the anti-inflammatory mechanism were investigated by in vitro fermentation and cell experiments. Firstly, mouse feces were fermented in vitro and different doses of RFOs (0~2%) were added to determine the changes in the representative bacterial community, PH, and short-chain fatty acids in the fermentation solution during the fermentation period. The probiotic index was used to evaluate the probiotic proliferation effect of RFOs and the optimal group was selected for 16S rRNA assay with blank group. Then, the effects of RFOs on the inflammatory response of macrophage RAW264.7 induced by LPS were studied. The activity of cells, the levels of NO, ROS, inflammatory factors, and the expression of NF-κB, p65, and iNOS proteins in related pathways were measured. The results demonstrated that RFOs exerted a stimulatory effect on the proliferation of beneficial bacteria while concurrently inhibiting the growth of harmful bacteria. Moreover, RFOs significantly enhanced the diversity of intestinal flora and reduced the ratio of Firmicutes-to-Bacteroides (F/B). Importantly, it was observed that RFOs effectively suppressed NO and ROS levels, as well as inflammatory cytokine release and expression of NF-κB, p65, and iNOS proteins. These findings highlight the potential of RFOs in promoting intestinal health and ameliorating intestinal inflammation.

3.
J Phys Chem A ; 127(40): 8473-8485, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768927

RESUMO

The performance of multistate density functional theory (MSDFT) with nonorthogonal state interaction (NOSI) is assessed for 100 vertical excitation energies against the theoretical best estimates extracted to the full configuration interaction accuracy on the database developed by Loos et al. in 2018 (Loos2018). Two optimization techniques, namely, block-localized excitation and target state optimization, are examined along with two ways of estimating the transition density functional (TDF) for the correlation energy of the Hamiltonian matrix density functional. The results from the two optimization methods are similar. It was found that MSDFT-NOSI using the spin-multiplet degeneracy constraint for the TDF of spin-coupling interaction, along with the M06-2X functional, yields a root-mean-square error (RMSE) of 0.22 eV, which performs noticeably better than time-dependent density functional theory (DFT) at an RMSE of 0.43 eV using the same functional and basis set on the Loos2018 database. In comparison with wave function theory, NOSI has smaller errors than CIS(D∞), LR-CC2, and ADC(3) all of which have an RMSE of 0.28 eV, but somewhat greater than STEOM-CCSD (RMSE of 0.14 eV) and LR-CCSD (RMSE of 0.11 eV) wave function methods. In comparison with Kohn-Sham (KS) DFT calculations, the multistate DFT approach has little double counting of correlation. Importantly, there is no noticeable difference in the performance of MSDFT-NOSI on the valence, Rydberg, singlet, triplet, and double-excitation states. Although the use of another hybrid functional PBE0 leads to a greater RMSE of 0.36 eV, the deviation is systematic with a linear regression slope of 0.994 against the results with M06-2X. The present benchmark reveals that density functional approximations developed for KS-DFT for the ground state with a noninteracting reference may be adopted in MSDFT calculations in which the state interaction is key.

4.
Nat Plants ; 9(9): 1547-1557, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653340

RESUMO

The major light-harvesting complex of photosystem II (LHCII) has a dual regulatory function in a process called non-photochemical quenching to avoid the formation of reactive oxygen. LHCII undergoes reversible conformation transitions to switch between a light-harvesting state for excited-state energy transfer and an energy-quenching state for dissipating excess energy under full sunshine. Here we report cryo-electron microscopy structures of LHCII in membrane nanodiscs, which mimic in vivo LHCII, and in detergent solution at pH 7.8 and 5.4, respectively. We found that, under low pH conditions, the salt bridges at the lumenal side of LHCII are broken, accompanied by the formation of two local α-helices on the lumen side. The formation of α-helices in turn triggers allosterically global protein conformational change, resulting in a smaller crossing angle between transmembrane helices. The fluorescence decay rates corresponding to different conformational states follow the Dexter energy transfer mechanism with a characteristic transition distance of 5.6 Å between Lut1 and Chl612. The experimental observations are consistent with the computed electronic coupling strengths using multistate density function theory.


Assuntos
Oxigênio , Tilacoides , Regulação Alostérica , Microscopia Crioeletrônica , Transferência de Energia
5.
Medicine (Baltimore) ; 102(29): e34030, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478234

RESUMO

BACKGROUND: To investigate the potential active ingredients and possible mechanisms of Shujin Tongluo granules (SJTLG) in the treatment of cervical spondylosis (CS) by network pharmacology and molecular docking. METHODS: The active ingredients and potential targets of SJTLG were obtained through databases such as traditional Chinese medicine system (TCMSP) and BATMAN-traditional Chinese medicine (TCM), and the relevant human targets of CS were identified through databases such as OMIM, GeneCards, and DisGeNET. The intersection targets were imported into STRING for protein-protein interaction (PPI) analysis. The obtained data were imported into Cytoscape 3.9.0 software for visualization, and module analysis was performed using the MCODE plug-in. The representative targets were screened through the Metascape website for pathway enrichment analysis in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Cytoscape software was used to build networks such as "drug-compound-target" and "drug-compound-target-pathway." Finally, the key targets were selected for molecular docking with the corresponding compounds by Autodock Tools 1.5.7 and visualized by PyMol. RESULTS: A total of 132 active compounds and 996 targets from SJTLG and 678 targets from CS were screened with 116 intersection targets. The key targets were AKT1, GAPDH, ALB, IL-6, TP53, TNF, VEGFA, IL-1ß, EGFR, HSP90AA1, ESR1, and JUN. The results of GO and KEGG enrichment analysis showed that the treatment of CS was mainly related to biological processes such as cellular response to nitrogen compound, cellular response to organonitrogen compound, and positive regulation of locomotion, and the targets were mainly focused on pathways in cancer, Kaposi sarcoma-associated herpesvirus infection, PI3K-Akt signaling pathway, lipid, and atherosclerosis. Molecular docking results showed that the minimum binding energy between the core targets and the corresponding compound was <-5.0 kcal·mol-1. CONCLUSION: This study preliminarily elucidates the potential active ingredients and mechanism of anti-inflammatory, analgesic, microcirculation improvement, vasodilation, osteoporosis inhibition and nerve nutrition effects of SJTLG in the treatment of CS and provides a reference for its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Espondilose , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espondilose/tratamento farmacológico
6.
JACS Au ; 3(7): 1800-1819, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502166

RESUMO

A multistate energy decomposition analysis (MS-EDA) method is described to dissect the energy components in molecular complexes in excited states. In MS-EDA, the total binding energy of an excimer or an exciplex is partitioned into a ground-state term, called local interaction energy, and excited-state contributions that include exciton excitation energy, superexchange stabilization, and orbital and configuration-state delocalization. An important feature of MS-EDA is that key intermediate states associated with different energy terms can be variationally optimized, providing quantitative insights into widely used physical concepts such as exciton delocalization and superexchange charge-transfer effects in excited states. By introducing structure-weighted adiabatic excitation energy as the minimum photoexcitation energy needed to produce an excited-state complex, the binding energy of an exciplex and excimer can be defined. On the basis of the nature of intermolecular forces through MS-EDA analysis, it was found that molecular complexes in the excited states can be classified into three main categories, including (1) encounter excited-state complex, (2) charge-transfer exciplex, and (3) intimate excimer or exciplex. The illustrative examples in this Perspective highlight the interplay of local excitation polarization, exciton resonance, and superexchange effects in molecular excited states. It is hoped that MS-EDA can be a useful tool for understanding photochemical and photobiological processes.

7.
J Chem Theory Comput ; 19(6): 1777-1789, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917687

RESUMO

A flexible self-consistent field method, called target state optimization (TSO), is presented for exploring electronic excited configurations and localized diabatic states. The key idea is to partition molecular orbitals into different subspaces according to the excitation or localization pattern for a target state. Because of the orbital-subspace constraint, orbitals belonging to different subspaces do not mix. Furthermore, the determinant wave function for such excited or diabatic configurations can be variationally optimized as a ground state procedure, unlike conventional ΔSCF methods, without the possibility of collapsing back to the ground state or other lower-energy configurations. The TSO method can be applied both in Hartree-Fock theory and in Kohn-Sham density functional theory (DFT). The density projection procedure and the working equations for implementing the TSO method are described along with several illustrative applications. For valence excited states of organic compounds, it was found that the computed excitation energies from TSO-DFT and time-dependent density functional theory (TD-DFT) are of similar quality with average errors of 0.5 and 0.4 eV, respectively. For core excitation, doubly excited states and charge-transfer states, the performance of TSO-DFT is clearly superior to that from conventional TD-DFT calculations. It is shown that variationally optimized charge-localized diabatic states can be defined using TSO-DFT in energy decomposition analysis to gain both qualitative and quantitative insights on intermolecular interactions. Alternatively, the variational diabatic states may be used in molecular dynamics simulation of charge transfer processes. The TSO method can also be used to define basis states in multistate density functional theory for excited states through nonorthogonal state interaction calculations. The software implementing TSO-DFT can be accessed from the authors.

8.
J Phys Chem Lett ; 14(12): 2917-2926, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36929896

RESUMO

A multistate energy decomposition analysis (MS-EDA) method is introduced for excimers using density functional theory. Although EDA has been widely applied to intermolecular interactions in the ground state, few methods are currently available for excited-state complexes. Here, the total energy of an excimer state is separated into exciton excitation energy ΔEEx(|ΨX·ΨY⟩*), resulting from the state interaction between locally excited monomer states |ΨX*·ΨY⟩ and |ΨX·ΨY*⟩ , a superexchange stabilization energy ΔESE, originating from the mutual charge transfer between two monomers |ΨX+·ΨY⟩ and |ΨX-·ΨY+⟩ , and an orbital-and-configuration delocalization term ΔEOCD due to the expansion of configuration space and block-localized orbitals to the fully delocalized dimer system. Although there is no net charge transfer in symmetric excimer cases, the resonance of charge-transfer states is critical to stabilizing the excimer. The monomer localized excited and charge-transfer states are variationally optimized, forming a minimal active space for nonorthogonal state interaction (NOSI) calculations in multistate density functional theory to yield the intermediate states for energy analysis. The present MS-EDA method focuses on properties unique to excited states, providing insights into exciton coupling, superexchange and delocalization energies. MS-EDA is illustrated on the acetone and pentacene excimer systems; three configurations of the latter case are examined, including the optimized excimer, a stacked configuration of two pentacene molecules and the fishbone orientation. It is found that excited-state energy splitting is strongly dependent on the relative energies of the monomer excited states and the phase-matching of the monomer wave functions.

9.
J Chem Theory Comput ; 18(11): 6407-6420, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36287915

RESUMO

In this Perspective, we introduce a minimal active space (MAS) for the lowest N eigenstates of a molecular system in the framework of multistate density functional theory (MSDFT), consisting of no more than N2 nonorthgonal Slater determinants. In comparison with some methods in wave function theory in which one seeks to expand the ever increasing size of an active space to approximate the wave functions, it is possible to have an upper bound in MSDFT because the auxiliary states in a MAS are used to represent the exact N-dimensional matrix density function D(r). Here, we partition the total Hamiltonian matrix functional H[D] into an orbital-dependent part, including multistate kinetic energy Tms and Coulomb-exchange energy EHx plus an external potential energy ∫dr v(r)D(r), and a correlation matrix density functional Ec[D]. The latter accounts for the part of correlation energy not explicitly included in the minimal active space. A major difference from Kohn-Sham DFT is that state interactions are necessary to represent the N-matrix density D(r) in MSDFT, rather than a noninteracting reference state for the scalar ground-state density ρo(r). Two computational approaches are highlighted. We first derive a set of nonorthogonal multistate self-consistent-field (NOSCF) equations for the variational optimization of H[D]. We introduce the multistate correlation potential, as the functional derivative of Ec[D], which includes both correlation effects within the MAS and that from the correlation matrix functional. Alternatively, we describe a nonorthogonal state interaction (NOSI) procedure, in which the determinant functions are optimized separately. Both computational methods are useful for determining the exact eigenstate energies and for constructing variational diabatic states, provided that the universal correlation matrix functional is known. It is hoped that this discussion would stimulate developments of approximate multistate density functionals both for the ground and excited states.

10.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684406

RESUMO

This work explores the electronic structure as well as the reactivity of singlet diradicals, making use of multistate density functional theory (MSDFT). In particular, we show that a minimal active space of two electrons in two orbitals is adequate to treat the relative energies of the singlet and triplet adiabatic ground state as well as the first singlet excited state in many cases. This is plausible because dynamic correlation is included in the first place in the optimization of orbitals in each determinant state via block-localized Kohn-Sham density functional theory. In addition, molecular fragment, i.e., block-localized Kohn-Sham orbitals, are optimized separately for each determinant, providing a variational diabatic representation of valence bond-like states, which are subsequently used in nonorthogonal state interactions (NOSIs). The computational procedure and its performance are illustrated on some prototypical diradical species. It is shown that NOSI calculations in MSDFT can be used to model bond dissociation and hydrogen-atom transfer reactions, employing a minimal number of configuration state functions as the basis states. For p- and s-types of diradicals, the closed-shell diradicals are found to be more reactive than the open-shell ones due to a larger diabatic coupling with the final product state. Such a diabatic representation may be useful to define reaction coordinates for electron transfer, proton transfer and coupled electron and proton transfer reactions in condensed-phase simulations.

11.
J Chem Phys ; 156(10): 104106, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291777

RESUMO

Vibrational spectroscopy is a useful technique for probing chemical environments. The development of models that can reproduce the spectra of nitriles and azides is valuable because these probes are uniquely suited for investigating complex systems. Empirical vibrational spectroscopic maps are commonly employed to obtain the instantaneous vibrational frequencies during molecular dynamics simulations but often fail to adequately describe the behavior of these probes, especially in its transferability to a diverse range of environments. In this paper, we demonstrate several reasons for the difficulty in constructing a general-purpose vibrational map for methyl thiocyanate (MeSCN), a model for cyanylated biological probes. In particular, we found that electrostatics alone are not a sufficient metric to categorize the environments of different solvents, and the dominant features in intermolecular interactions in the energy landscape vary from solvent to solvent. Consequently, common vibrational mapping schemes do not cover all essential interaction terms adequately, especially in the treatment of van der Waals interactions. Quantum vibrational perturbation (QVP) theory, along with a combined quantum mechanical and molecular mechanical potential for solute-solvent interactions, is an alternative and efficient modeling technique, which is compared in this paper, to yield spectroscopic results in good agreement with experimental FTIR. QVP has been used to analyze the computational data, revealing the shortcomings of the vibrational maps for MeSCN in different solvents. The results indicate that insights from QVP analysis can be used to enhance the transferability of vibrational maps in future studies.

12.
Cancers (Basel) ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35326543

RESUMO

BACKGROUND: Heterogeneity in oral potentially malignant disorder (OPMD) poses a problem for accurate prognosis that impacts on treatment strategy and patient outcome. A holistic assessment based on gene expression signatures from both the tumour cells and their microenvironment is necessary to provide a more precise prognostic assessment than just tumour cell signatures alone. METHODS: We reformulated our previously established multigene qPCR test, quantitative Malignancy Index Diagnostic System (qMIDS) with new genes involved in matrix/stroma and immune modulation of the tumour microenvironment. An algorithm calculates and converts a panel of 16 gene mRNA expression levels into a qMIDS index to quantify risk of malignancy for each sample. RESULTS: The new qMIDSV2 assay was validated in a UK oral squamous cell carcinoma (OSCC) cohort (n = 282) of margin and tumour core samples demonstrating significantly better diagnostic performance (AUC = 0.945) compared to previous qMIDSV1 (AUC = 0.759). Performance of qMIDSV2 were independently validated in Chinese (n = 35; AUC = 0.928) and Indian (n = 95; AUC = 0.932) OSCC cohorts. Further, 5-year retrospective analysis on an Indian dysplastic lesion cohort (n = 30) showed that qMIDSV2 was able to significantly differentiate between lesions without transformation and those with malignant transformation. CONCLUSIONS: This study validated a novel multi-gene qPCR test on a total of 535 tissue specimens from UK, China and India, demonstrating a rapid minimally invasive method that has a potential application for dysplasia risk stratification. Further study is required to establish if qMIDSV2 could be used to improve OPMD patient management, guide treatment strategy and reduce oral cancer burden.

13.
J Phys Chem Lett ; 12(31): 7409-7417, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328742

RESUMO

Delta self-consistent-field methods are widely used in studies of electronically excited states. However, the nonaufbau determinants are generally spin-contaminated. Here, we describe a general approach for spin-coupling interactions of open-shell molecules, making use of multistate density functional theory (MSDFT). In particular, the effective exchange integrals that determine spin coupling are obtained by enforcing the multiplet degeneracy of the S+1 state in the MS = S manifold. Consequently, they are consistent with the energy of the high-spin state that is adequately treated by Kohn-Sham density functional theory (DFT) and, thereby, free of double counting of correlation. The method was applied to core excitations of open-shell molecules and compared with those by spin-adapted time-dependent DFT. An excellent agreement with experiment was found employing the BLYP functional and aug-cc-pCVQZ basis set. Overall, MSDFT provides an effective combination of the strengths of DFT and wave function theory to achieve efficiency and accuracy.

14.
J Alzheimers Dis ; 81(2): 517-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814454

RESUMO

BACKGROUND: Microglia play diverse roles in Alzheimer's disease (AD). Intracellular metabolism has been indicated an important factor in modulating the function of microglia. However, it is not clear whether the intracellular metabolism of microglia changes dynamically in different stages of AD. OBJECTIVE: To determine whether microglia intracellular metabolism changes dynamically in different stages of AD. METHODS: Microglia were extracted from APPSwe/PS1dE9 (APP/PS1) mice and wild-type littermates at 2, 4, and 8 months old by fluorescence-activated cell sorting and used for RNA-sequencing analysis and quantitative PCR. Morphologies of amyloid plaques and microglia were detected by immunofluorescence staining. RESULTS: Compared with control littermates, the microglia of APP/PS1 mice exhibited significant transcriptional changes at 2-month-old before microglia morphological alterations and the plaque formation. The changes continued drastically following age with defined morphological shift of microglia and amyloid plaque enhancement in brains. Further analysis of those genotype and age dependent transcriptomic changes revealed that differentially expressed genes were enriched in pathways related to energy metabolism. Compared with wild-type mice, there were changes of some vital genes related to glucose metabolism and lipid metabolism pathways in APP/PS1 mice at different ages. Glucose metabolism may play a major role in early activation of microglia, and lipid metabolism may be more important in later activation period. CONCLUSION: Our results showed that microglia actively participate in the pathological progress of AD. The intracellular metabolism of microglia changed significantly in different stages of AD, even preceding amyloid-ß deposition.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/patologia , Transcriptoma/fisiologia
15.
NPJ Comput Mater ; 7(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36713117

RESUMO

Multistate density functional theory (MSDFT) employing a minimum active space (MAS) is presented to determine charge transfer (CT) and local excited states of bimolecular complexes. MSDFT is a hybrid wave function theory (WFT) and density functional theory, in which dynamic correlation is first incorporated in individual determinant configurations using a Kohn-Sham exchange-correlation functional. Then, nonorthogonal configuration-state interaction is performed to treat static correlation. Because molecular orbitals are optimized separately for each determinant by including Kohn-Sham dynamic correlation, a minimal number of configurations in the active space, essential to representing low-lying excited and CT states of interest, is sufficient to yield the adiabatic states. We found that the present MAS-MSDFT method provides a good description of covalent and CT excited states in comparison with experiments and high-level computational results. Because of the simplicity and interpretive capability through diabatic configuration weights, the method may be useful in dynamic simulations of CT and nonadiabatic processes.

16.
J Chem Theory Comput ; 17(1): 277-289, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356213

RESUMO

The block-localized wave function method is useful to provide insights on chemical bonding and intermolecular interactions through energy decomposition analysis. The method relies on block localization of molecular orbitals (MOs) by constraining the orbitals to basis functions within given blocks. Here, a generalized block-localized orbital (GBLO) method is described to allow both physically localized and delocalized MOs to be constrained in orbital-block definitions. Consequently, GBLO optimization can be conveniently tailored by imposing specific constraints. The GBLO method is illustrated by three examples: (1) constrained polarization response orbitals through dipole and quadrupole perturbation in a water dimer complex, (2) the ground and first excited-state potential energy curves of ethene about its C-C bond rotation, and (3) excitation energies of double electron excited states. Multistate density functional theory is used to determine the energies of the adiabatic ground and excited states using a minimal active space (MAS) comprising specifically charge-constrained and excited determinant configurations that are variationally optimized by the GBLO method. We find that the GBLO expansion that includes delocalized MOs in configurational blocks significantly reduces computational errors in comparison with physical block localization, and the computed ground- and excited-state energies are in good accordance with experiments and results obtained from multireference configuration interaction calculations.

17.
Front Neurol ; 9: 531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150966

RESUMO

Background: The aim of this study is to identify the effects of hand positions (head and jaw) on the video head-impulse test (vHIT). Methods: Eighty-six healthy volunteers and sixty-seven patients with unilateral vestibular neuritis (UVN) were recruited for this study. Different hand positions (head and jaw) were used in the vHIT of horizontal semicircular canals in healthy volunteers and UVN patients. All the obtained horizontal vHIT gains were analyzed. Results: It was observed that when horizontal vHIT was performed with the head hand position, the number of head impulses that produced overhigh vestibulo-ocular reflex (VOR) gains was more than that with the jaw hand position (p < 0.01), irrespective of whether the test was performed in healthy volunteers or UVN patients. The gains obtained were lower when the jaw hand position was used than that obtained when the head hand position was used (p < 0.05). However, no significant difference existed in the mean head velocity between the two hand positions (p > 0.05). Using the head hand position has greater a chance to elicit in UVN patients normal horizontal vHIT gains with refixation saccades than using the jaw hand position (p = 0.04). Conclusion: The jaw hand position can increase the accuracy of vHIT in determining the lesion side.

18.
Inflammation ; 41(3): 996-1007, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29541888

RESUMO

Nobiletin (NOB), a citrus polymethoxy flavonoid, has been reported to exhibit anti-inflammatory, anti-cancer, and anti-insulin resistance activities. Although the anti-inflammatory activity of NOB already reported, its involvement in lung protection has not been reported. Thus, this study aimed to investigate the anti-inflammatory response of NOB in lipopolysaccharide (LPS)-stimulated A549 cells and LPS-induced acute lung injury (ALI) in mice. The animals were pre-treated with NOB (5, 10, and 20 mg/kg) or DEX (5 mg/kg) at 12 and 1 h before intranasal instillation of LPS. The severity of pulmonary injury was evaluated 6 h after LPS administration. Results suggested that treatment with NOB dramatically attenuated lung histopathological changes, wet-to-dry (W/D) ratio, myeloperoxidase (MPO) activity, the numbers of inflammatory cells, and TNF-α, IL-6, and NO in BALF induced by LPS. Furthermore, NOB also significantly inhibited the expression of iNOS and the phosphorylation of NF-κBp65 and IκBα. In vitro, NOB inhibited NF-κB activation and TNF-α, IL-6 production in LPS-stimulated A549 cells. Taken together, these results indicated that NOB exhibited a protective effect on ALI, and the possible mechanism is involved in inhibiting NF-κB activation, subsequently inhibiting LPS-induced inflammatory response.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Flavonas/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Células A549 , Animais , Antioxidantes/farmacologia , Flavonas/uso terapêutico , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Zhongguo Zhong Yao Za Zhi ; 37(18): 2730-4, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-23285921

RESUMO

OBJECTIVE: To know how Shenfu injection is used in clinical practice and to provide a reference for guiding clinical use of Shenfu injection. METHOD: Extract Shenfu injection's post-marketing re-evaluation data from the hospital information system (HIS) of 20 national grade III-A General Hospitals, use basic statistical analysis methods to analyze Shenfu injection's indications, usage and dosage, treatment course etc. in clinical practice. RESULT: In patients using Shenfu injection, the average age was 62. 15, and patients mainly concentrated in cardiovascular medicine. In clinical practice, Shenfu injection was used mainly for treatment of coronary heart disease (diagnosed as chest obstruction in traditional Chinese medicine). The treatment course mainly ranged from 3 to 7 days, and the dosage was within the limits prescribed by the instruction. CONCLUSION: Shenfu injection was mainly used for elderly patients, and has been used according to instruction in practice almostly.


Assuntos
Tratamento Farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Sistemas de Informação Hospitalar , Avaliação de Resultados em Cuidados de Saúde , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Ensaios Clínicos como Assunto , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA