Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(1): 105829, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36619983

RESUMO

Itch is a complex and unpleasant sensory experience. Recent studies have begun to investigate the neural mechanisms underlying the modulation of sensory and emotional components of itch in the brain. However, the key brain regions and neural mechanism involved in modulating the attentional processing of itch remain elusive. Here, we showed that the prelimbic cortex (PrL) is associated with itch processing and that the manipulation of itch-responsive neurons in the PrL significantly disrupted itch-induced scratching. Interestingly, we found that increasing attentional bias toward a distracting stimulus could disturb itch processing. We also demonstrated the existence of a population of attention-related neurons in the PrL that drive attentional bias to regulate itch processing. Importantly, itch-responsive neurons and attention-related neurons significantly overlapped in the PrL and were mutually interchangeable in the regulation of itch processing at the cellular activity level. Our results revealed that the PrL regulates itch processing by controlling attentional bias.

2.
Sci Adv ; 8(30): eabn4408, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905177

RESUMO

Itch is a cutaneous sensation that is critical in driving scratching behavior. The long-standing question of whether there are specific neurons for itch modulation inside the brain remains unanswered. Here, we report a subpopulation of itch-specific neurons in the ventrolateral orbital cortex (VLO) that is distinct from the pain-related neurons. Using a Tet-Off cellular labeling system, we showed that local inhibition or activation of these itch-specific neurons in the VLO significantly suppressed or enhanced itch-induced scratching, respectively, whereas the intervention did not significantly affect pain. Conversely, suppression or activation of pain-specific neurons in the VLO significantly affected pain but not itch. Moreover, fiber photometry and immunofluorescence verified that these itch- and pain-specific neurons are distinct in their functional activity and histological location. In addition, the downstream targets of itch- and pain-specific neurons were different. Together, the present study uncovers an important subpopulation of neurons in the VLO that specifically modulates itch processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA