Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(19): 54657-54665, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879088

RESUMO

As an important commercial form of vanadium, vanadium pentoxide (V2O5) is widely used in various modern industries, and its environmental impacts and ecotoxicity have been extensively studied. In this research, the ecotoxicity of V2O5 to earthworms (Eisenia fetida) in soil was tested by exposure to V2O5 at a series of doses, and biochemical response indices, such as the superoxide dismutase (SOD) and catalase (CAT) enzyme activity and malondialdehyde (MDA) content, were analysed to determine the mechanism by which antioxidant enzymes respond to V2O5 exposure. The bioaccumulation factor (BAF) of vanadium pentoxide in the earthworms and soil was also measured to explore the bioaccumulation process of V2O5 in the test period. The results showed that the acute and subchronic lethal toxicity values of V2O5 towards E. fetida were 21.96 mg/kg (LC50, 14 days) and 6.28 mg/kg (LC10, 28 days), respectively. For the antioxidant enzymes, SOD and CAT were synchronously induced or inhibited within the time period, and the enzyme activity had a dose-effect relationship with the V2O5 concentration. MDA analysis indicated that lipid peroxidation in earthworms mainly occurred at the early stage and was eliminated slowly in the later stage during the test time. In addition, the BAFs were much less than 1, which indicated that V2O5 did not easily accumulate in earthworms, and the BAF was positively correlated with the exposure time and negatively linearly correlated with the V2O5 concentration in the soil. These results indicated that the bioconcentration and metabolic mechanism of V2O5 in earthworms differed with the different exposure concentrations, and bioaccumulation became balanced after 14-28 days in earthworms exposed to a relatively lower dose of V2O5. The analysis of the integrated biomarker response (IBR) index indicated that the trends of IBR values were positively related to the changing V2O5 concentration, and the IBR index could reflect the organism's sensitivity to the external stimulus of V2O5. The toxicity of V2O5 is mainly caused by V5+, which is also an important factor in formulating guidelines regarding vanadium levels in soil, and the test earthworm species (Eisenia fetida) is a sensitive biological indicator for risk assessments of vanadium oxidation in the soil.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/metabolismo , Bioacumulação , Solo/química , Vanádio/toxicidade , Vanádio/análise , Poluentes do Solo/análise , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Malondialdeído/metabolismo
2.
Opt Express ; 29(16): 25254-25269, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614859

RESUMO

It has been a great challenge to design an extremely flexible and stretchable electrochromic device (ECD), due to the physical deformation and fracture of the conductive materials and supporting substrates after plenty of bending. To solve the aforementioned shortcoming of ECDs, in this paper, a self-supporting metal Ni gird electrode is mentioned, which discarded solid or flexible polymeric substrates, having outstanding features of extremely foldability (bending radius lower 50 µm), stretchability (stretching to 117.6%), excellent conductivity (sheet resistance lower 0.4 Ω/sq), high transmittance (about 90% in full spectra), and ultra-thin thickness (3.7 µm). By assembling the metal electrode, the electrochromic material and the hydrogel, a paper-thin, ultra-flexible, and stretchable ECD with an overall thickness of 113 µm was prepared, which could be attached to the manifold and undulating surface of things and be stretched without compromising the dynamic bleaching and coloration performance. The triple-layered and substrate-free ECD with excellent flexibility and wearability could serve as futuristic electronics used for multiple purposes, like flexible displays, camouflage wearables and medical monitoring, etc.

3.
Huan Jing Ke Xue ; 42(3): 1354-1360, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742932

RESUMO

Phenol is widely used in the production of insulation and thermal insulation materials, adhesives, perfumes, coatings for food containers, paints, and pharmaceutical production, and is also widely detected in the aquatic environment. Long-term exposure to phenol can elicit adverse effects, such as skin burn, liver and central system damage. Here, phenol concentrations in the water and aquatic products of Poyang Lake were investigated. Human health risks from phenol to adults and adolescents were also assessed based on local population exposure parameters. The exposure concentration range of phenol in the studied water and aquatic products was not detected (ND)-556.26 ng·L-1 and 11.98-255.51 µg·kg-1, respectively. Human health risk based on drinking water in different areas ranged from 3.80×10-7-8.46×10-5. Higher human health risks from drinking water was detected in the southern area of Poyang Lake and at the confluence of the Yangtze River to the north. Health risks caused by different types of aquatic products ranges 2.65×10-5-1.47×10-4. In particular, human health risks from the consumption of yellow catfish and catfish are an order of magnitude higher than for other aquatic products. Probabilistic risk assessment was also conducted through Monte Carlo simulation to analyze the health risk to the population in the Poyang Lake Basin and assess its sensitivity of different exposure parameters. The 95th percentile health risk of drinking water and aquatic product consumption in the Poyang Lake Basin was calculated as being acceptable. Overall, the concentrations of phenol had the greatest impact on the calculated health risk values. This study provides valuable information for phenol risk management in the Poyang Lake basin.


Assuntos
Lagos , Fenol , Adolescente , China , Monitoramento Ambiental , Humanos , Lagos/análise , Medição de Risco , Rios , Água
4.
Opt Express ; 27(21): 29547-29557, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684214

RESUMO

Flexible electronics, as a futuristic technology, is presenting tremendous impact in areas of wearable displaying, energy saving, and adaptive camouflage. In this work, we constructed a simple triple-layered electrochemical device with high flexibility using the electroplated nickel (Ni) grid electrode and the multifunctional hydrogel. The Ni grid electrode with low resistance (0.5 Ω/sq), high optical transparency (84.8%) and good mechanical flexibility, is beneficial for efficient electron injection, while the transparent lithium chloride hydrogel functions simultaneously for ion storage, ion transportation and counter-conducting. The thin polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) film is utilized as the electrochromic (EC) material and it also distributes the electrons evenly for uniform coloration. The triple-layered EC architecture not only simplifies the manufacturing procedures but also improves the device performance in terms of optical contrast and mechanical robustness. The device shows fast response for coloration and bleaching with an absolute transmittance contrast of 40% and a contrast retention over 72% after 2500 bending cycles. The ability of the flexible electrochromic device for conformable attaching was also investigated without obvious performance degradation. The electroplated Ni grid electrode and the multifunctional hydrogel are advantageous in constructing flexible electrochromic devices in terms of the response time, the working stability and the bending capability, paving a way for next-generation flexible electronics.

5.
Zhong Yao Cai ; 35(7): 1112-6, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23252278

RESUMO

OBJECTIVE: To study the effect of polysaccharides from Radix Glycyrrhizae on migration and polyamines (putrescine, spermidine and spermine) contents of IEC-6 cell. METHODS: Cell migration model was induced by scratch method in each well,and the polyamines in IEC-6 cell was determined by pre-column derivation high performance liquid chromatography. The polysaccharides inhibited effect on migration and polyamines contents of IEC-6 cells, and on IEC-6 cell migration by DFMO (a polyamines synthesis inhibitor) and the polyamines contents in the cells were observed. RESULTS: The polysaccharides (50 mg/L or 100 mg/L) was able to promote the cell migration, reverse the cell migration inhibition by DFMO, enhance the IEC-6 cell polyamines (putrescine, spermidine and spermine) contents in the process of cell migration and reverse the reduction of polyamines (putrescine, spermidine and spermine) induced by DFMO. CONCLUSION: The effect of Radix Glycyrrhizae on the gastrointestinal mucosal damage repairing may be related to increasing polyamine content in cells and promoting cell migration.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glycyrrhiza/química , Mucosa Intestinal/citologia , Poliaminas/metabolismo , Polissacarídeos/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacologia , Eflornitina/antagonistas & inibidores , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Raízes de Plantas/química , Ratos , Rizoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA