Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 261: 114417, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968837

RESUMO

BACKGROUND: Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms. METHOD: We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage. RESULT: We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (ß = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (ß = -0.21; 95% CI: -0.39, -0.03), Mn and the annual increase rate of GLB (ß = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (ß = -1.15; 95% CI: -2.00, -0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways. CONCLUSION: Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.

2.
Ecotoxicol Environ Saf ; 281: 116659, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964060

RESUMO

Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.

3.
Ecotoxicol Environ Saf ; 278: 116424, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723382

RESUMO

BACKGROUND: Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD: This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-ß-D-glucosaminidase (NAG), and ß2-microglobulin (ß2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT: Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION: Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.


Assuntos
Biomarcadores , Metais Pesados , Metais Pesados/toxicidade , Metais Pesados/urina , Humanos , China/epidemiologia , Masculino , Biomarcadores/urina , Feminino , Estudos Longitudinais , Pessoa de Meia-Idade , Adulto , Poluentes Ambientais/toxicidade , Taxa de Filtração Glomerular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Rim/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/urina , Acetilglucosaminidase/urina , Microglobulina beta-2/urina , Monitoramento Ambiental
4.
Ecotoxicol Environ Saf ; 274: 116178, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461577

RESUMO

BACKGROUND: The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS: In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS: The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION: Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.


Assuntos
Cádmio , Metais Pesados , Humanos , Cádmio/toxicidade , Teorema de Bayes , Chumbo/farmacologia , Metais Pesados/farmacologia , Manganês/toxicidade , Cromo/farmacologia , Fígado
5.
Ecotoxicol Environ Saf ; 262: 115139, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37327523

RESUMO

Chronic kidney disease (CKD) is a public health concern worldwide, and chromium exposure may be a risk factor due to its potential nephrotoxicity. However, research on the association between chromium exposure and kidney function especially the potential threshold effect of chromium exposure is limited. A repeated-measures study involving 183 adults (641 observations) was conducted from 2017 to 2021 in Jinzhou, China. Urinary albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were measured as kidney function biomarkers. Generalized mixed models and two-piecewise linear spline mixed models were used to assess the dose-response relationship and potential threshold effect of chromium on kidney function, respectively. Temporal analysis was conducted by the latent process mixed model to depict the longitudinal change of kidney function over age. Urinary chromium was associated with CKD (odds ratio [OR] = 1.29; 95 % confidence interval [CI], 6.41, 14.06) and UACR (Percent change = 10.16 %; 95 % CI, 6.41 %, 14.06 %), and we did not find significant association between urinary chromium and eGFR (Percent change = 0.06 %; 95 % CI, -0.80 %, 0.95 %). The threshold analyses suggested the existence of threshold effects of urinary chromium, with inflection points at 2.74 µg/L for UACR and 3.95 µg/L for eGFR. Furthermore, we found that chromium exposure exhibited stronger kidney damage over age. Our study provided evidence for the threshold effects of chromium exposure on kidney function biomarkers and the heightened nephrotoxicity of chromium in older adults. More attention should be paid to the supervision of chromium exposure concentrations for preventing kidney damage, especially in older adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA