Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Insect Sci ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556782

RESUMO

The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.

2.
Nat Commun ; 15(1): 2627, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521787

RESUMO

IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1ß inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Fibrose , Inflamação , Leucócitos Mononucleares/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Heliyon ; 10(2): e24886, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312668

RESUMO

This study examines the differences in service level and coverage of public transit (PT) and private vehicles (PV) with multi-source data in Shanghai. To construct computable networks and address visual results, the constrained shortest path algorithm and a spatial grid accessibility model are employed to seek the optimal path for travelers to city key points. Travel time ratio of PV and PT is applied to reflect the competitiveness of the two modes over different areas of Shanghai. Results show that for PV, although the average travel time meets the needs of car travel, 51 % of the population cannot get to graded city centers within 45 min. In addition, the PV accessibility gradually weakens from the central city to the outside, highways and expressways may be feasible solutions. For PT, half of the population can't reach any city key points within two transfers, and almost all of these people live in the suburbs. Less than 30 % of the population can reach the city key points within 1 h, of which rail transit contributes more than conventional buses. Furthermore, the travel accessibility of PV is much better than that of PT. The average travel time ratio in all comparable grids is 2.04 for hubs, and 2.10 for graded city centers. For travels to graded city centers, the travel time ratio of suburbs is 35 % higher than that of central city, indicating that the inequity distribution of public transportation resources is worse in the suburbs than in the central city. This study also measures equity performance of groups based on spatial location and income level, and we find out that more core locations and higher income lead to higher accessibility. The gap among groups is significant, with a Gini coefficient over 0.5.

4.
Nat Commun ; 15(1): 310, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182595

RESUMO

The increase in intense tropical cyclone (TC) activity across the western North Pacific (WNP) has often been attributed to a warming ocean. However, it is essential to recognize that the tropical WNP region already boasts high temperatures, and a marginal increase in oceanic warmth due to global warming does not exert a significant impact on the potential for TCs to intensify. Here we report that the weakened vertical wind shear is the primary driver behind the escalating trend in TC intensity within the summer monsoon trough of the tropical WNP, while local ocean surface and subsurface thermodynamic factors play a minor role. Through observational diagnoses and numerical simulations, we establish that this weakening of the vertical wind shear is very likely due to the increase in temperature of the Tibetan Plateau. With further warming of the Tibetan Plateau under the Representative Concentration Pathway 4.5 scenario, the projected TCs will likely become stronger.

5.
Huan Jing Ke Xue ; 45(1): 480-488, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216497

RESUMO

Microplastics can become potential transport carriers of other environmental pollutants (such as heavy metals), so the combined pollution of microplastics and heavy metals has attracted increasing attention from researchers. To explore the mechanism of plant growth-promoting bacteria VY-1 alleviating the combined pollution stress of heavy metals and microplastics in sorghum, the effects of inoculation on biomass and accumulation of heavy metals in sorghum were analyzed using a hydroponics experiment, and the effects of inoculation on gene expression in sorghum were analyzed via transcriptomics. The results showed that the combined pollution of polyethylene (PE) and cadmium (Cd) decreased the dry weight of above-ground and underground parts by 17.04% and 10.36%, respectively, compared with that under the single Cd pollution, which showed that the combined toxicity effect of the combined pollution on plant growth was enhanced. The inoculation of plant growth-promoting bacteria VY-1 could alleviate the toxicity of Cd-PE combined pollution and increase the length of aboveground and underground parts by 33.83% and 73.21% and the dry weight by 56.64% and 33.44%, respectively. Transcriptome sequencing showed that 904 genes were up-regulated after inoculation with VY-1. Inoculation with growth-promoting bacteria VY-1 could up-regulate the expression of several genes in the auxin, abscisic acid, flavonoid synthesis, and lignin biosynthesis pathways, which promoted the response ability of sorghum under Cd-PE combined pollution stress and improved its resistance. The above results indicated that plant growth-promoting bacteria could alleviate the stress of heavy metal and microplastic combined pollution by regulating plant gene expression, which provided a reference for plant-microbial joint remediation of heavy metal and microplastic combined pollution.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Microplásticos , Plásticos , Sorghum/genética , Sorghum/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Bactérias/genética , Bactérias/metabolismo , Perfilação da Expressão Gênica , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
6.
Obes Surg ; 34(2): 625-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191968

RESUMO

BACKGROUND: The Roux-en-Y gastric bypass (RYGB) is a common bariatric surgery to treat obesity. Its metabolic consequences are favourable and long-term clinical corollaries beneficial. However, detailed assessments of various affected metabolic pathways and their mediating physiological factors are scarce. METHODS: We performed a clinical study with 30 RYGB patients in preoperative and 6-month postoperative visits. NMR metabolomics was applied to profiling of systemic metabolism via 80 molecular traits, representing core cardiometabolic pathways. Glucose, glycated haemoglobin (HbA1c), insulin, and apolipoprotein B-48 were measured with standard assays. Logistic regression models of the surgery effect were used for each metabolic measure and assessed individually for multiple mediating physiological factors. RESULTS: Changes in insulin concentrations reflected those of BMI with robust decreases due to the surgery. Six months after the surgery, triglycerides, remnant cholesterol, and apolipoprotein B-100 were decreased -24%, -18%, and -14%, respectively. Lactate and glycoprotein acetyls, a systemic inflammation biomarker, decreased -16% and -9%, respectively. The concentrations of branched-chain (BCAA; leucine, isoleucine, and valine) and aromatic (phenylalanine and tyrosine) amino acids decreased after the surgery between -17% for tyrosine and -23% for leucine. Except for the most prominent metabolic changes observed for the BCAAs, all changes were almost completely mediated by weight change and insulin. Glucose and type 2 diabetes had clearly weaker effects on the metabolic changes. CONCLUSIONS: The comprehensive metabolic analyses indicate that weight loss and improved insulin sensitivity during the 6 months after the RYGB surgery are the key physiological outcomes mediating the short-term advantageous metabolic effects of RYGB. The clinical study was registered at ClinicalTrials.gov as NCT01330251.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Diabetes Mellitus Tipo 2/cirurgia , Leucina , Insulina , Glucose , Tirosina
7.
Cell Death Dis ; 15(1): 75, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242872

RESUMO

The anti-foreign tissue (transplant rejection) response, mediated by the immune system, has been the biggest obstacle to successful organ transplantation. There are still many enigmas regarding this process and some aspects of the underlying mechanisms driving the immune response against foreign tissues remain poorly understood. Here, we found that a large number of neutrophils and macrophages were attached to the graft during skin transplantation. Furthermore, both types of cells could autonomously adhere to and damage neonatal rat cardiomyocyte mass (NRCM) in vitro. We have demonstrated that Complement C3 and the receptor CR3 participated in neutrophils/macrophages-mediated adhesion and damage this foreign tissue (NRCM or skin grafts). We have provided direct evidence that the damage to these tissues occurs by a process referred to as trogocytosis, a damage mode that has never previously been reported to directly destroy grafts. We further demonstrated that this process can be regulated by NFAT, in particular, NFATc3. This study not only enriches an understanding of host-donor interaction in transplant rejection, but also provides new avenues for exploring the development of novel immunosuppressive drugs which prevent rejection during transplant therapy.


Assuntos
Rejeição de Enxerto , Fatores de Transcrição NFATC , Neutrófilos , Ratos , Animais , Trogocitose , Macrófagos
8.
Drug Dev Res ; 85(1): e22128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984820

RESUMO

In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 µM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 µM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiazóis , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Estrutura Molecular
9.
Free Radic Biol Med ; 212: 295-308, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141890

RESUMO

Schistosomiasis, caused by Schistosoma spp., is a zoonotic parasitic disease affecting human health. Rattus norvegicus (rats) are a non-permissive host of Schistosoma, in which the worms cannot mature and cause typical egg granuloma. We previously demonstrated that inherent high levels of nitric oxide (NO), produced by inducible NO synthase (iNOS), is a key molecule in blocking the development of S. japonicum in rats. To further explore the mechanism of NO inhibiting S. japonicum development in rats, we performed S-nitrosocysteine proteomics of S. japonicum collected from infected rats and mice. The results suggested that S. japonicum in rats may have undergone endoplasmic reticulum (ER) stress. Interestingly, we found that the ER of S. japonicum in rats showed marked damage, while the ER of the worm in iNOS-/- rats and mice were relatively normal. Moreover, the expression of ER stress markers in S. japonicum from WT rats was significantly increased, compared with S. japonicum from iNOS-/- rats and mice. Using the NO donor sodium nitroprusside in vitro, we demonstrated that NO could induce ER stress in S. japonicum in a dose-dependent manner, and the NO-induced ER stress in S. japonicum could be inhibited by ER stress inhibitor 4-Phenyl butyric acid. We further verified that inhibiting ER stress of S. japonicum in rats promoted parasite development and survival. Furthermore, we demonstrated that NO-induced ER stress of S. japonicum was related to the efflux of Ca2+ from ER and the impairment of mitochondrial function. Collectively, these findings show that high levels of NO in rats could induce ER stress in S. japonicum by promoting the efflux of Ca2+ from ER and damaging the mitochondrial function, which block the worm development. Thus, this study further clarifies the mechanism of anti-schistosome in rats and provides potential strategies for drug development against schistosomiasis and other parasitosis.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Ratos , Camundongos , Humanos , Animais , Óxido Nítrico , Mitocôndrias , Estresse do Retículo Endoplasmático , Esquistossomose Japônica/tratamento farmacológico , Esquistossomose Japônica/parasitologia
10.
Toxics ; 11(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38133383

RESUMO

The recalcitrant nature of emerging contaminants (ECs) in aquatic environments necessitates the development of effective strategies for their remediation, given the considerable impacts they pose on both human health and the delicate balance of the ecosystem. Semiconductor-based photocatalytic technology is recognized for its dual benefits in effectively addressing both ECs and energy-related challenges simultaneously. Among the plethora of photocatalysts, black phosphorus (BP) stands as a promising nonmetallic candidate, offering a host of advantages including its tunable direct band gap, broad-spectrum light absorption capabilities, and exceptional charge mobility. Nevertheless, pristine BP frequently underperforms, primarily due to issues related to its limited ambient stability and the rapid recombination of photogenerated electron-hole pairs. To overcome these challenges, substantial research efforts have been devoted to the creation of BP-based photocatalysts in recent years. However, there is a noticeable absence of reviews regarding the advancement of BP-based materials for the degradation of ECs in aqueous solutions. Therefore, to fill this gap, a comprehensive review is undertaken. In this review, we first present an in-depth examination of the fabrication processes for bulk BP and BP nanosheets (BPNS). The review conducts a thorough analysis and comparison of the merits and limitations inherent in each method, thereby delineating the most auspicious avenues for future research. Then, in line with the pathways followed by photogenerated electron-hole pairs at the interface, BP-based photocatalysts are systematically categorized into heterojunctions (Type I, Type II, Z-scheme, and S-scheme) and hybrids, and their photocatalytic performances against various ECs and the corresponding degradation mechanisms are comprehensively summarized. Finally, this review presents personal insights into the prospective avenues for advancing the field of BP-based photocatalysts for ECs remediation.

11.
Nanoscale Adv ; 5(22): 6162-6169, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941950

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck, and this disease has become a threat to public health due to its poor prognosis and high fatality rate. Chemodynamic therapy (CDT) is an emerging oncology treatment based on the Fenton reaction. However, the lack of endogenous hydrogen peroxide (H2O2) in tumor cells and the high concentration of glutathione (GSH) that depletes toxic hydroxyl radicals (·OH) significantly impair the efficacy of CDT. Here, we developed a polyvinyl alcohol (PVA)-based soluble microneedle patch (denoted as Fe3O4 + VC-MN) loaded with Fe3O4 nanoparticles (NPs) and vitamin C (VC) for the effective treatment of OSCC. When Fe3O4 + VC-MNs are inserted into the OSCC tissue, the Fe3O4 NPs and VC loaded in the tip of the needle are released in a targeted manner. After VC is converted into oxidized vitamin C (DHA), it can consume GSH in tumor cells and generate sufficient intracellular H2O2in situ. Moreover, by virtue of their peroxidase-like activity, Fe3O4 NPs can induce the generation of lethal ·OH through the Fenton reaction with the aforementioned H2O2, leading to tumor cell ferroptosis and apoptosis, thus achieving CDT. Collectively, this functional microneedle patch provides a more efficient and minimally invasive targeted drug delivery solution for the treatment of OSCC.

12.
Sci Rep ; 13(1): 20375, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989871

RESUMO

In the background environment of the serious problem of high temperature heat damage in deep mining, some mines have complex and interlocking forms of roadway arrangement, with the innovative concept of cooling on demand as the principle, this paper develops a mobile ice cooling equipment, and introduces and explains the equipment from the perspective of principle, composition and dimensions. and uses Comsol simulation software to simulate and analyze the main heat exchange process of the mobile ice cooling equipment under the conditions of two cooling sources, obtains quantitative results on the finned tube arrangement parameters and the heat exchange cooling effect of the equipment under ideal conditions, which provides data for the optimization and upgrading of this mobile ice cooling equipment. The results show that the mobile cooling equipment is capable of feeding the desired temperature of the cooling air into deep mine, and with flexible, convenient, efficient, and cost effective. This research and development is a new exploration of deep ventilation and cooling technology and equipment means, puts forward a new concept, accumulates valuable experience, and lays the foundation for the subsequent related research and optimization.

13.
J Med Chem ; 66(21): 14735-14754, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874867

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is well-known to cause biofilm-associated drug resistance and infections that often lead to treatment failure. Herein, we reported a dual-acting antibiofilm strategy by inhibiting both the bacterial quorum sensing system and the iron uptake system. A series of coumarin derivatives were synthesized and evaluated, and compound 4t was identified as the most effective biofilm inhibitor (IC50 = 3.6 µM). Further mechanistic studies have confirmed that 4t not only inhibits the QS systems but also competes strongly with pyoverdine as an iron chelator, causing an iron deficiency in P. aeruginosa. Additionally, 4t significantly improved the synergistic antibacterial effects of ciprofloxacin and tobramycin by more than 200-1000-fold compared to the single-dose antibiotic treatments. Therefore, our study has shown that 4t is a potentially novel antibacterial synergist candidate to treat bacterial infections.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Cumarínicos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Ferro/farmacologia , Homeostase , Fatores de Virulência , Proteínas de Bactérias
14.
Cell Discov ; 9(1): 101, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794085

RESUMO

Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.

15.
BMC Biol ; 21(1): 194, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704988

RESUMO

BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.


Assuntos
Aedes , Vírus da Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Aedes/genética , Vírus da Dengue/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética
16.
Toxics ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624197

RESUMO

The prevalence of antiviral drugs (ATVs) has seen a substantial increase in response to the COVID-19 pandemic, leading to heightened concentrations of these pharmaceuticals in wastewater systems. The hydrophilic nature of ATVs has been identified as a significant factor contributing to the low degradation efficiency observed in wastewater treatment plants. This characteristic often necessitates the implementation of additional treatment steps to achieve the complete degradation of ATVs. Semiconductor-based photocatalysis has garnered considerable attention due to its promising potential in achieving efficient degradation rates and subsequent mineralization of pollutants, leveraging the inexhaustible energy of sunlight. However, in recent years, there have been few comprehensive reports that have thoroughly summarized and analyzed the application of photocatalysis for the removal of ATVs. This review commences by summarizing the types and occurrence of ATVs. Furthermore, it places a significant emphasis on delivering a comprehensive summary and analysis of the characteristics pertaining to the photocatalytic elimination of ATVs, utilizing semiconductor photocatalysts such as metal oxides, doped metal oxides, and heterojunctions. Ultimately, the review sheds light on the identified research gaps and key concerns, offering invaluable insights to steer future investigations in this field.

17.
Mar Genomics ; 71: 101048, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620054

RESUMO

Phage SL20, a novel lytic Pseudoalteromonas phage, was isolated from the coastal waters of the Yellow Sea, China. The microbiological characterization demonstrated that phage SL20 was relatively stable from 35 to 55 °C and the optimal pH was approximately 6.0. A latent period of approximately 24 min was indicated by a one-step growth curve. The burst size was approximately 12 ± 3 PFU/cell. The genome had a length of 120,295 bp with a G + C content of 35.84%, and predicted 95 ORFs. The phylogenetic tree based on DNA helicase showed that Pseudoalteromonas phage SL20 was related to the Pseudoalteromonas phage H101 and was a member of the family Shandongvirus. The isolation and genomic analysis of SL20 has improved our understanding of host-phage interactions and the ecology of the marine bacteria Pseudoalteromonas.


Assuntos
Bacteriófagos , Pseudoalteromonas , Pseudoalteromonas/genética , Filogenia , Mapeamento Cromossômico , Bacteriófagos/genética , China
18.
Pharm Biol ; 61(1): 1162-1174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37559380

RESUMO

CONTEXT: Ginsenoside metabolite compound K (CK) is an active metabolite produced by ginsenosides in vivo that has an anti-arthritic effect related to the glucocorticoid receptor (GR). However, the potential mechanisms of CK remain unclear. OBJECTIVE: This study explores the role and potential mechanisms of CK in vivo and in vitro. MATERIALS AND METHODS: Adjuvant arthritis (AA) model was induced in Sprague-Dawley (SD) rats; the rats were randomly divided into four groups (n = 10): normal, AA, CK (80 mg/kg), and dexamethasone (Dex) group (1 mg/kg). From day 15, rats were treated with CK (once a day, i.g.) and Dex (once every 3 days, i.p.) for 18 days. To further verify the mechanism of CK, fibroblast-like synoviocytes (FLS) were stimulated by tumour necrosis factor α (TNF-α) to establish an inflammatory model in vitro. RESULTS: CK (80 mg/kg) reduced paw swelling (52%) and arthritis global assessment (31%) compared to that in AA rats. In addition, CK (80 mg/kg) suppressed GLUT1 (38%), HK2 (50%), and PKM2 (56%) levels compared with those in AA FLS. However, the effects of CK (30 µM) on these events were weakened or enhanced after GR knockdown or overexpression in FLS stimulated by TNF-α (30 ng/mL). CK (80 mg/kg) also downregulated the expression of P65 (61%), p-IκB (92%), and HIF-1α (59%). DISCUSSION AND CONCLUSIONS: The inhibition of CK on glycolysis and the NF-κB/HIF-1α pathway is potentially mediated through activating GR. These findings provide experimental evidence for elucidating the molecular mechanism of CK in treating rheumatoid arthritis (RA).


Assuntos
Artrite Experimental , Ginsenosídeos , Sinoviócitos , Ratos , Animais , NF-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Ginsenosídeos/farmacologia , Artrite Experimental/patologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Glicólise , Membrana Sinovial/metabolismo
19.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420871

RESUMO

Colorimetric characterization is the basis of color information management in color imaging systems. In this paper, we propose a colorimetric characterization method based on kernel partial least squares (KPLS) for color imaging systems. This method takes the kernel function expansion of the three-channel response values (RGB) in the device-dependent space of the imaging system as input feature vectors, and CIE-1931 XYZ as output vectors. We first establish a KPLS color-characterization model for color imaging systems. Then we determine the hyperparameters based on nested cross validation and grid search; a color space transformation model is realized. The proposed model is validated with experiments. The CIELAB, CIELUV and CIEDE2000 color differences are used as evaluation metrics. The results of the nested cross validation test for the ColorChecker SG chart show that the proposed model is superior to the weighted nonlinear regression model and the neural network model. The method proposed in this paper has good prediction accuracy.


Assuntos
Algoritmos , Colorimetria , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Gestão da Informação , Cor
20.
Biosens Bioelectron ; 237: 115549, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523810

RESUMO

Heavy metal contamination has become a severe threat to dairy products through contaminated feed and the environment water. Among them, Pb(II) is highly toxic to the human body even under minimal exposure. Therefore, establishing a fast and sensitive Pb2+ detection technology is significant for rapid screening of vast number of dairy products. Hererin, we report the development of a sensitive and selective Pb(II) biosensor based on a solution-gated graphene transistor (SGGT) with the gate modified by Pb2+-dependent DNAzyme probes. It has also been explored that the DNAzymes working in simple binding mode integrate better with the SGGT than those working in normal catalytic mode, showing significantly stronger channel current responses and lower detection limit down to 0.39 µg/L (or 1.9 nM). Finally, the biosensor was practicably applied to the detection of lead ions in pure milk samples with a high recovery rate. We believe that this work reveals the best strategy for integrating metal ion dependent DNAzyme probes with SGGT sensing platforms to selectively and sensitively detect many metal ions.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Grafite , Humanos , DNA Catalítico/metabolismo , Chumbo , Íons , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA