Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Nat Hazards (Dordr) ; 120(12): 10807-10833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371427

RESUMO

Large landslides can involve the multiple failures of regional slopes. To understand the effect of lateral thrust caused by the failure of one slope on its surroundings, the failures of two adjacent highway slopes in Guangdong Province, China, were investigated in detail. The interactive failure processes and landslide morphological characteristics of the two slopes were first analyzed based on the on-site investigation. Then, a plane mechanical model of a large-scale slope was established to evaluate the significant influence of the lateral thrust generated by the west slope acting on the east excavated slope. Furthermore, the extrusion effect of the west slope was modelled under the alternate excavation disturbance and rainfall by transferring the thrust forces onto the interface elements, and the induced failure mechanism and instability mode of the east slope under lateral thrust were reproduced numerically. The results show that the compression-shear failure occurred at the middle and rear slope bodies because of the lateral thrust, which led to the formation of a thrust landslide and the final instability of the east slope.

2.
Chem Commun (Camb) ; 60(81): 11512-11515, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39308398

RESUMO

Transition metal-catalyzed cleavage and reconstruction of the C-P bond provides a highly efficient and rapid method for the transformation of organophosphine compounds. In this study, a novel and general protocol for the palladium-catalyzed C(sp3)-P(V) bond cleavage of free α-aminophosphonates and subsequent functionalization via C-P bond recombination has been developed. The reaction exhibits high reactivity between the C(sp3)-P bond and halides, accommodating a wide range of substrates and enabling the rapid synthesis of aryl, alkenyl, and alkyl organophosphine molecules. Additionally, the synthetic utility is validated by gram-scale synthesis, and the reaction process is corroborated by mechanistic experiments.

3.
ACS Appl Mater Interfaces ; 16(39): 52153-52161, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39295299

RESUMO

With the development of technology, multifunctional multiband emitters have been paid much attention due to their wide range of applications, such as LIDAR detection, spectroscopic sensing, and infrared thermal management. However, the development of such emitters is impeded by incompatible structural requirements of different electromagnetic wavebands. Here, we demonstrate coupled modulation between near-infrared (NIR) laser-wavelength and long-wavelength-infrared by constructing a multifunctional emitter (MFE) with a structure of Al/HfO2/VO2, utilizing the phase transition of VO2. The MFE displays excellent thermal modulation capability within the 8-14 µm range, achieving a thermal insulation effect (ε8-14 µm = 0.18) at low temperatures, and heat dissipation effect (ε8-14 µm = 0.64) at high temperatures. The MFE's radiation power regulation capability is 145.06 W m-2 between a temperature of 0 to 60 °C. Moreover, the MFE possesses a large reflectivity modulation value of 0.78 at NIR laser-wavelength (1.06 µm) with a short phase transition time of 1003 ms under 3 W cm-2 laser irradiation. This study provides a guideline for the coordinated control of electromagnetic waves and intelligent collaborative thermal management through simple structural design, thus, having broad implications in energy saving and thermal information processing.

5.
Front Psychiatry ; 15: 1404050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315326

RESUMO

Objective: Research indicates that cognitive control is compromised in individuals with internet gaming disorder (IGD). However, the neural mechanisms behind it are still unclear. This study aims to investigate alterations in resting-state brain networks in adolescents with IGD and the potential neurobiological mechanisms underlying cognitive dysfunction. Materials and methods: A total of 44 adolescent IGD subjects (male/female: 38/6) and 50 healthy controls (male/female: 40/10) were enrolled. Participants underwent demographic assessments, Young's Internet Addiction Scale, Barratt Impulsiveness Scale 11 Chinese Revised Version, the Chinese Adolescents' Maladaptive Cognitions Scale, exploratory eye movement tests, and functional magnetic resonance imaging (fMRI). FMRI data were analyzed using the GIFT software for independent component analysis, focusing on functional connectivity within and between resting-state brain networks. Results: In comparison to the control group, impulsivity in adolescent IGD subjects showed a positive correlation with the severity of IGD (r=0.6350, p < 0.001), linked to impairments in the Executive Control Network (ECN) and a decrease in functional connectivity between the Salience Network (SN) and ECN (r=0.4307, p=0.0021; r=-0.5147, p=0.0034). Decreased resting state activity of the dorsal attention network (DAN) was associated with attentional dysregulation of IGD in adolescents (r=0.4071, p=0.0017), and ECN increased functional connectivity with DAN. The degree of IGD was positively correlated with enhanced functional connectivity between the ECN and DAN (r=0.4283, p=0.0037). Conclusions: This research demonstrates that changes in the ECN and DAN correlate with heightened impulsivity and attentional deficits in adolescents with IGD. The interaction between cognitive control disorders and resting-state brain networks in adolescent IGD is related.

6.
Genes Genomics ; 46(10): 1209-1223, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39141243

RESUMO

BACKGROUND: ACO (1-aminocyclopropane-1-carboxylic acid) serves as a pivotal enzyme within the plant ethylene synthesis pathway, exerting influence over critical facets of plant biology such as flowering, fruit ripening, and seed development. OBJECTIVE: This study aims to identify ACO genes from representative Rosaceae genomes, reconstruct their phylogenetic relationships by integrating synteny information, and investigate their expression patterns and networks during fruit development. METHODS: we utilize a specialized Hidden Markov Model (HMM), crafted on the sequence attributes of ACO gene-encoded proteins, to systematically identify and analyze ACO gene family members across 12 representative species within the Rosaceae botanical family. Through transcriptome analysis, we delineate the expression patterns of ACO genes in six distinct Rosaceae fruits. RESULTS: Our investigation reveals the presence of 62 ACO genes distributed among the surveyed Rosaceae species, characterized by hydrophilic proteins predominantly expressed within the cytoplasm. Phylogenetic analysis categorizes these ACO genes into three discernible classes, namely Class I, Class II, and Class III. Further scrutiny via collinearity assessment indicates a lack of collinearity relationships among these classes, highlighting variations in conserved motifs and promoter types within each class. Transcriptome analysis unveils significant disparities in both expression levels and trends of ACO genes in fruits exhibiting respiratory bursts compared to those that do not. Employing Weighted Gene Co-Expression Network Analysis (WGCNA), we discern that the co-expression correlation of ACO genes within loquat fruit notably differs from that observed in apples. Our findings, derived from Gene Ontology (GO) enrichment results, signify the involvement of ACO genes and their co-expressed counterparts in biological processes linked to terpenoid metabolism and carbohydrate synthesis in loquat. Moreover, our exploration of gene regulatory networks (GRN) highlights the potential pivotal role of the GNAT transcription factor (Ejapchr1G00010380) in governing the overexpression of the ACO gene (Ejapchr10G00001110) within loquat fruits. CONCLUSION: The constructed HMM of ACO proteins offers a precise and systematic method for identifying plant ACO proteins, facilitating phylogenetic reconstruction. ACO genes from representative Rosaceae fruits exhibit diverse expression and regulative patterns, warranting further function characterizations.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Filogenia , Rosaceae , Frutas/genética , Frutas/crescimento & desenvolvimento , Rosaceae/genética , Rosaceae/crescimento & desenvolvimento , Rosaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Liases/genética , Liases/metabolismo , Aminoácido Oxirredutases
7.
Surg Technol Int ; 442024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151149

RESUMO

The advent of robotic bronchoscopy coupled with electromagnetic navigation bronchoscopy (EMN) and shape-sensing technology have increased diagnostic yields for peripheral pulmonary nodules compared to traditional bronchoscopy. Yet, diagnostic yields from these bronchoscopic platforms still fall short of where they should be. This shortfall is in large part due to a lack of advanced imaging during peripheral bronchoscopy and computed tomography (CT)-to-body divergence (CTBD). Digital lung tomosynthesis (DLT) is an advanced imaging modality that helps overcome CTBD during bronchoscopic biopsies of lung nodules. DLT is a quasi-3D imaging technique, which reconstructs tomographic images of the lung from a series of 2D fluoroscopic projection images. These images can be acquired either using a digital flat panel fluoroscopy machine or a fluoroscopy machine with a more traditional image-intensifier present in most standard bronchoscopy suites. This review aims to explain the mechanisms of both CTBD and DLT to help diagnose early-stage lung cancer more effectively.

8.
J Org Chem ; 89(18): 13774-13781, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39215753

RESUMO

Palladium-catalyzed Suzuki-Miyaura cross-coupling is an efficient approach for C-C bond construction. Here we report a deaminative Suzuki-Miyaura reaction to achieve chemo- and regioselectivity in the cross-coupling of nonactivated propargylamines with boronic acids, in which methyl propiolate is introduced to promote the cleavage of the C-N bond to form the C-C bond. This method features a wide range of substrates, good functional group tolerance, and ease of operation, providing an alternative approach to accessing valuable propargylated aromatic compounds.

9.
Int Urol Nephrol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090516

RESUMO

PURPOSE: The aim of this study was to investigate the efficacy and safety of three minimally invasive surgical approaches for treating large upper ureteral stones complicated by infection in elderly (> 60 years) patients. METHODS: Clinical data from 95 elderly patients with large upper ureteral stones and infection, treated at our hospital between January 2018 and April 2023, were retrospectively analyzed. The surgical approaches included FURL (flexible ureteroscopic lithotripsy) 33 cases, mPCNL (minimally percutaneous nephrolithotomy) 29 cases, and RLUL (retroperitoneal laparoscopic ureterolithotomy) 33 cases. Surgical time, intraoperative blood loss, postoperative hospital stay, reoperation rate, incidence of postoperative complications, and hospitalization costs were observed and compared among the three groups. RESULTS: No statistically significant difference was found in stone clearance rates among the three groups (P > 0.05). The FURL group exhibited advantages over the mPCNL and RLUL groups in surgical time, intraoperative blood loss, and postoperative hospital stay (P < 0.05). However, it also had the highest reoperation rate and hospitalization costs (P < 0.05). RLUL demonstrated superiority over the mPCNL and RLUL groups in terms of reoperation rate, incidence of complications, and hospitalization costs (P < 0.05). Notably, mPCNL exhibited the highest complication rate at 37.9% (P < 0.05). CONCLUSION: For elderly patients with large upper ureteral stones complicated by infection, FURL, mPCNL, and RLUL represent effective surgical approaches. Further attention is needed regarding the perioperative safety of mPCNL. RLUL, which offers higher safety, efficacy, and cost-effectiveness, can be considered a primary surgical option for these patients.

10.
BMC Med Imaging ; 24(1): 216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148028

RESUMO

BACKGROUND: Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation. The diagnosis of FCD is challenging. We generated a radiomics nomogram based on multiparametric magnetic resonance imaging (MRI) to diagnose FCD and identify laterality early. METHODS: Forty-three patients treated between July 2017 and May 2022 with histopathologically confirmed FCD were retrospectively enrolled. The contralateral unaffected hemispheres were included as the control group. Therefore, 86 ROIs were finally included. Using January 2021 as the time cutoff, those admitted after January 2021 were included in the hold-out set (n = 20). The remaining patients were separated randomly (8:2 ratio) into training (n = 55) and validation (n = 11) sets. All preoperative and postoperative MR images, including T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and combined (T1w + T2w + FLAIR) images, were included. The least absolute shrinkage and selection operator (LASSO) was used to select features. Multivariable logistic regression analysis was used to develop the diagnosis model. The performance of the radiomic nomogram was evaluated with an area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration and clinical utility. RESULTS: The model-based radiomics features that were selected from combined sequences (T1w + T2w + FLAIR) had the highest performances in all models and showed better diagnostic performance than inexperienced radiologists in the training (AUCs: 0.847 VS. 0.664, p = 0.008), validation (AUC: 0.857 VS. 0.521, p = 0.155), and hold-out sets (AUCs: 0.828 VS. 0.571, p = 0.080). The positive values of NRI (0.402, 0.607, 0.424) and IDI (0.158, 0.264, 0.264) in the three sets indicated that the diagnostic performance of Model-Combined improved significantly. The radiomics nomogram fit well in calibration curves (p > 0.05), and decision curve analysis further confirmed the clinical usefulness of the nomogram. Additionally, the contrast (the radiomics feature) of the FCD lesions not only played a crucial role in the classifier but also had a significant correlation (r = -0.319, p < 0.05) with the duration of FCD. CONCLUSION: The radiomics nomogram generated by logistic regression model-based multiparametric MRI represents an important advancement in FCD diagnosis and treatment.


Assuntos
Displasia Cortical Focal , Imageamento por Ressonância Magnética Multiparamétrica , Nomogramas , Radiômica , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Displasia Cortical Focal/diagnóstico por imagem , Lateralidade Funcional , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Estudos Retrospectivos
11.
Mol Biol Rep ; 51(1): 923, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164448

RESUMO

BACKGROUND: Flaxseed has been widely used in animal diets to increase the omega-3 polyunsaturated fatty acid content in animal products and promote overall animal health, but little known about its effects on the productive performance and the mictobita of gut of laying duck. METHODS AND RESULTS: Jinding duck, a Chinese indigenous breed, was used in the study. The corn-soybean basal diet supplemented with 0, 2%, 3% 4% and 5% flaxseed were provided to Control, 2% Fla, 3% Fla, 4% Fla and 5% Fla groups for 53 days, respectively. Compared with Control group, groups fed with flaxseed diets showed higher egg production, egg mass, ovary weight and more preovulatory follicles. The Docosahexaenoic Acid content of egg was extremely significantly elevated by flaxseed diets (P < 0.01), and the albumen height and haugh unit were elevated, especially in 4% Fla and/or 5% Fla group (P < 0.05). Groups 4% Fla and 5% Fla had highest ileal villus height, jejunal and ileal crypt depth. Moreover, Flaxseed diets significantly increased the levels of IgG and IgM in all Fla groups (P < 0.01), while increased IgA levels except for in 3% Fla group (P < 0.05). The results of 16s rDNA sequencing showed that flaxseed diet altered the microbial composition of gut and reduced the diversity and evenness of gut microbial communities except for 5% Fla. The correlation analysis identified Blautia, Butyricicoccus and Subdoligranulum positively associated with egg production. Genera Fourinierella, Fusobacterium and Intestinimonas positively associated with ovary weight, haught unit and album height. And Mucispirillum positively associated with haugh unit and album height. CONCLUSION: This study has suggested that flaxseed play a positive role in productive performance, the overall or intestinal health of laying ducks.


Assuntos
Ração Animal , Patos , Linho , Microbioma Gastrointestinal , Animais , Feminino , Dieta , Suplementos Nutricionais , RNA Ribossômico 16S/genética
12.
Microorganisms ; 12(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39065241

RESUMO

Cotton is highly sensitive to potassium, and Xinjiang, China's leading cotton-producing region, faces a severe challenge due to reduced soil potassium availability. Biofertilizers, particularly potassium-solubilizing rhizobacteria (KSR), convert insoluble potassium into plant-usable forms, offering a sustainable solution for evergreen agriculture. This study isolated and characterized KSR from cotton, elucidated their potassium solubilization mechanisms, and evaluated the effects of inoculating KSR strains on cotton seedlings. Twenty-three KSR strains were isolated from cotton rhizosphere soil using modified Aleksandrov medium. Their solubilizing capacities were assessed in a liquid medium. Strain A10 exhibited the highest potassium solubilization capacity (21.8 ppm) by secreting organic acids such as lactic, citric, acetic, and succinic acid, lowering the pH and facilitating potassium release. A growth curve analysis and potassium solubilization tests of A10 under alkali stress showed its vigorous growth and maintained solubilization ability at pH 8-9, with significant inhibition at pH 10. Furthermore, 16S rRNA sequencing identified strain A10 as Pseudomonas aeruginosa. Greenhouse pot experiments showed that inoculating cotton plants with strain A10 significantly increased plant height and promoted root growth. This inoculation also enhanced dry biomass accumulation in both the aerial parts and root systems of the plants, while reducing the root-shoot ratio. These results suggest that Pseudomonas aeruginosa A10 has potential as a biofertilizer, offering a new strategy for sustainable agriculture.

13.
Acc Chem Res ; 57(15): 2184-2193, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39058688

RESUMO

ConspectusOver the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz-matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials. However, these theories face challenges when applied to the THz spectrum with an ultrabroad bandwidth. Existing thin films typically achieve a maximum intrinsic absorption within a narrow frequency range, significantly limiting the performance of THz absorbers and detectors. To date, both theoretical frameworks and experimental solutions are lacking in overcoming the challenge of achieving broadband maximum intrinsic absorption in the THz regime.In this Account, we describe how two-dimensional (2D) transition-metal carbide and/or nitride (MXene) films with nanometer thickness can realize the maximum intrinsic absorption in the ultrabroad THz band, which successfully addresses the forementioned longstanding issue. Surprisingly, traditional DC impedance matching theory fails to explain this phenomenon, while we instead propose a novel theory of AC impedance matching to provide a satisfactory explanation. By delving into the microscopic transport behavior of free electrons in MXene, we discover that intraflake transport dominates terahertz conductivity under THz wave excitation, while interflake transport primarily dictates DC conductivity. This not only elucidates the significant disparities between DC and AC impedance in MXenes but also underscores the suitability of AC impedance matching for achieving broadband THz absorption limits. Furthermore, we identify a high electron concentration and short relaxation time as crucial factors for achieving broadband maximum absorption in the THz regime. Although approaching the THz intrinsic absorbing limits, it still faces hurdles to the use of MXene in practical applications. First, diverse and uncontrollable terminations exist on the surface of MXene stemming from the synthesis process, which largely influence the electron structure and THz absorbing property of MXene. Second, MXene suffers from poor stability in the presence of oxygen and water. To address the above issues, we have undertaken distinctive works to precisely control the terminations and suppress the oxidation of MXene even at high temperature through surface and interface chemistry, such as low-temperature Lewis basic halide treatment and building a Ti3C2Tx/extracted bentonite (EB) interface. For practical application consideration, we proposed a copolymer-polyacrylic latex (PAL)-based MXene waterborne paint (MWP) with a strong intermolecular polar interaction between MWP and the substrate provided by the cyano group in PAL. This not only has strong THz EMI shielding/absorption efficiency but also can easily adhere to various substrates that are commonly used in the THz band. These studies may have significant implications for future applications of MXene nanofilms in THz optoelectronic devices.

14.
Phys Rev E ; 109(6-1): 064908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020922

RESUMO

The drag force acting on an intruder colliding with granular media is typically influenced by the impact velocity and the penetrating depth. In this paper, the investigation was extended to the dry and immersed scenarios through coupled simulations at different penetrating velocities. The drag force regime was clarified to exhibit velocity dependence in the initial contact stage, followed by the inertial transit stage with a F∼z^{2} (force-depth) relationship. Subsequently, it transitioned into the depth-dependent regime in both dry and immersed cases. The underlying rheological mechanism was explored, revealing that, in both dry and immersed scenarios, the granular bulk underwent a state relaxation process, as indicated by the granular inertial number. Additionally, the presence of the ambient fluid restricted the flow dynamics of the perturbed granular material, exhibiting a similar rheology as observed in the dry case.

16.
J Chromatogr A ; 1730: 465092, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38914029

RESUMO

Biochar, a sustainable sorbent derived from pyrolyzed biomass, has garnered attention for its efficacy in solid-phase extraction (SPE) of antibiotics, with a particular focus on tetracyclines (TCs). Despite its recognized potential, the intricate separation mechanisms operative in biochar-based SPE systems have not been fully deciphered. This investigation contrasts chlorella biochar against commercial bamboo biochar, harnessing an array of analytical methodologies-microstructure characterization, adsorption thermodynamics, competitive adsorption kinetics, H+ back titration, and selectivity adsorption studies-complemented by a Box-Behnken design for the optimization of chlorella/bamboo-SPE and subsequent application in the analysis of animal-derived foodstuffs. The study unveils that a hybrid sorbent, integrating nitrogen-doped microporous chlorella biochar with mesoporous bamboo biochar in a 95/5 mass ratio, markedly diminishes irreversible adsorption while enhancing selectivity, surpassing the performance of single biochar SPE systems. The elucidated separation mechanisms implicate a partition model, propelled by oxygen-rich functional groups on chlorella biochar and the rapid adsorption kinetics of bamboo biochar, all orchestrated by electrostatic interactions within the mixed biochar framework. Moreover, the synergy of mixed biochar-SPE with high-performance liquid chromatography (HPLC) demonstrates exceptional proficiency in detecting TCs in animal viscera, evidenced by recovery rates spanning 80.80 % to 106.98 % and RSDs ranging from 0.24 % to 14.69 %. In essence, this research not only sheds light on the multifaceted factors influencing SPE efficiency but also propels the use of biochar towards new horizons in environmental monitoring and food safety assurance.


Assuntos
Carvão Vegetal , Chlorella , Extração em Fase Sólida , Tetraciclinas , Carvão Vegetal/química , Extração em Fase Sólida/métodos , Adsorção , Chlorella/química , Tetraciclinas/isolamento & purificação , Tetraciclinas/química , Tetraciclinas/análise , Animais , Cinética , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/isolamento & purificação , Antibacterianos/química , Termodinâmica
17.
Hortic Res ; 11(6): uhae118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919560

RESUMO

Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.

18.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195041, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38740364

RESUMO

The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.


Assuntos
Peixes-Gato , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Regiões Promotoras Genéticas , Zinco , Animais , Zinco/metabolismo , Peixes-Gato/genética , Peixes-Gato/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transcrição Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fator MTF-1 de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
ACS Appl Mater Interfaces ; 16(21): 27291-27300, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743291

RESUMO

Metal-organic frameworks (MOFs) as promising electrocatalysts have been widely studied, but their performance is limited by conductivity and coordinating saturation. This study proposes a cationic (V) modification strategy and evaluates its effect on the electrocatalytic performance of CoFe-MOF nanosheet arrays. The optimal V-CoFe-MOF/NF electrocatalyst exhibits excellent oxygen-evolution reaction (OER)/hydrogen-evolution reaction (HER) performance (231 mV at 100 mA cm-2/86 mV at 10 mA cm-2) in alkaline conditions, with its OER durability exceeding 400 h without evident degradation. Furthermore, as a bifunctional electrocatalyst for water splitting, a small cell voltage is achieved (1.60 V at 10 mA cm-2). The practicability of the catalyst is further evaluated by membrane electrode assembly (MEA), showing outstanding activity (1.53 V at 10 mA cm-2) and long-term stability (at 300 mA cm-2). Moreover, our results reveal the apparent reconstruction properties of V-CoFe-MOF/NF in alkaline electrolytes, where the partially dissolved V promotes the formation of more active ß-MOOH. The mechanism study shows the OER mechanism shifts to a lattice oxygen oxidation mechanism (LOM) after V doping, which directly avoids complex multistep adsorption mechanism and reduces reaction energy. This study provides a cation mediated strategy for designing efficient electrocatalysts.

20.
Org Lett ; 26(19): 4132-4136, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38717283

RESUMO

In this report, we present the dual activation models for transient directing group-directed and amino-self-directed Pd-catalyzed α-aminophosphonate side-chain C(sp3)-H arylation. Both strategies showed facile, efficient, and single regioselectivity in the reaction between free α-aminophosphonates and aryl iodides. Furthermore, the modification of amino and late-stage functionalization of the C(sp3)-P bond from products indicates potential applications for α-aminophosphonates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA