Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38648136

RESUMO

The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which is preferred piezoelectric materials at 200 ° C- 300 ° C, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From 25 ° C to 250 ° C, 1-3-2 composites show a higher electromechanical coupling coefficient kt especially at high temperatures (~0.53 at 25 ° C and ~0.64 at 250 ° C) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to 250 ° C and remains stable ( [Formula: see text] mV) below 150 ° C, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103% at 250 ° C) compared with that of monolithic BSPT HTUTs (~30% at 250 ° C). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block was performed, showing the potential for high-temperature NDT applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34705642

RESUMO

( 1- x )BiScO3- x PbTiO3 (BS-PT) ceramics have excellent piezoelectricity and high Curie temperature at its morphotropic phase boundary (MPB) ( x = 0.64 ), so it is a promising piezoelectric material for fabricating high-temperature ultrasonic transducer (HTUT). Electric properties of 0.36BS-0.64PT ceramics were characterized at different temperatures, and an HTUT with the center frequency of about 15 MHz was designed by PiezoCAD based on the measuring results. The prepared HTUT was tested in a silicone oil bath at different temperatures systematically. The test results show that the HTUT can maintain a stable electrical resonance until 290 °C and get a clear echo response until 250 °C with slight changes of the center frequency. Then, a stepped metal block submerged in silicone oil was imaged by the HTUT until 250 °C. Velocity of silicone oil and axial resolution of the HTUT at different temperatures was calculated. The results verify the capability of 0.36BS-0.64PT-based HTUT for high-temperature ultrasonic imaging applications.


Assuntos
Transdutores , Ultrassom , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
3.
Ying Yong Sheng Tai Xue Bao ; 24(10): 3003-11, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24483099

RESUMO

Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.


Assuntos
Ácidos , Alumínio/toxicidade , Produtos Agrícolas/fisiologia , Solo/química , Estresse Fisiológico/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA