Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Glia ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39310943

RESUMO

Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.

2.
Food Sci Biotechnol ; 33(10): 2323-2331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145123

RESUMO

Red bell pepper (Capsicum annuum L.) is a popular and nutritious vegetable. In this study, oven cooking (OV), air-frying (AF), and infrared grilling (IR) were used to cook red bell peppers at different temperatures (170, 180, 190, and 200 °C). Changes in the total phenolic content, ascorbic acid content, antioxidant activity, and sugar and acrylamide content in red bell peppers were evaluated before and after cooking. The total phenolic and ascorbic acid contents decreased significantly after cooking (p < 0.05). Among the three evaluated methods, OV-cooked red bell peppers exhibited the highest antioxidant activity. The acrylamide content showed the lowest levels in OV 170 °C (93.67 ± 3.22 µg/kg dw) and the highest in AF 200 °C (1985.38 ± 76.39 µg/kg dw) samples. Compared to the AF and IR methods, OV was identified as the best way to preserve the antioxidant activity of red bell peppers while reducing acrylamide production. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01623-y.

3.
Eur Radiol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992110

RESUMO

OBJECTIVES: This study aims to evaluate image quality and regional lymph node metastasis (LNM) in patients with rectal cancer (RC) on multi-b-value diffusion-weighted imaging (DWI). METHODS: This retrospective study included 199 patients with RC who had undergone multi-b-value DWI. Subjective (five-point Likert scale) and objective assessments of quality images were performed on DWIb1000, DWIb2000, and DWIb3000. Patients were randomly divided into a training (n = 140) or validation cohort (n = 59). Radiomics features were extracted within the whole volume tumor on ADC maps (b = 0, 1000 s/mm2), DWIb1000, DWIb2000, and DWIb3000, respectively. Five prediction models based on selected features were developed using logistic regression analysis. The performance of radiomics models was evaluated with a receiver operating characteristic curve, calibration, and decision curve analysis (DCA). RESULTS: The mean signal intensity of the tumor (SItumor), signal-to-noise ratio (SNR), and artifact and anatomic differentiability score gradually were decreased as the b-value increased. However, the contrast-to-noise (CNR) on DWIb2000 was superior to those of DWIb1000 and DWIb3000 (4.58 ± 0.86, 3.82 ± 0.77, 4.18 ± 0.84, p < 0.001, respectively). The overall image quality score of DWIb2000 was higher than that of DWIb3000 (p < 0.001) and showed no significant difference between DWIb1000 and DWIb2000 (p = 0.059). The area under curve (AUC) value of the radiomics model based on DWIb2000 (0.728) was higher than conventional ADC maps (0.690), DWIb1000 (0.699), and DWIb3000 (0.707), but inferior to multi-b-value DWI (0.739) in predicting LNM. CONCLUSION: DWIb2000 provides better lesion conspicuity and LNM prediction than DWIb1000 and DWIb3000 in RC. CLINICAL RELEVANCE STATEMENT: DWIb2000 offers satisfactory visualization of lesions. Radiomics features based on DWIb2000 can be applied for preoperatively predicting regional lymph node metastasis in rectal cancer, thereby benefiting the stratified treatment strategy. KEY POINTS: Lymph node staging is required to determine the best treatment plan for rectal cancer. DWIb2000 provides superior contrast-to-noise ratio and lesion conspicuity and its derived radiomics best predict lymph node metastasis. DWIb2000 may be recommended as the optimal b-value in rectal MRI protocol.

4.
Environ Pollut ; 359: 124566, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39025292

RESUMO

Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.


Assuntos
Antibacterianos , Aspirina , Resistência Microbiana a Medicamentos , Microbioma Gastrointestinal , Sulfonamidas , Peixe-Zebra , Peixe-Zebra/genética , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Sulfonamidas/farmacologia , Aspirina/farmacologia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Poluentes Químicos da Água , Bactérias/genética , Bactérias/efeitos dos fármacos
5.
Front Psychiatry ; 15: 1382264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827446

RESUMO

Objective: The aim of this study was to examine the correlation between the level of mobile phone dependence among college students and their experience of academic burnout. Additionally, the study sought to explore the potential mediating effect of study engagement and the moderating role of love. Methods: During October and December 2023, a cross-sectional study measuring mobile phone dependence, academic burnout, and study engagement among Chinese college students, using the UtrechtWork Engagement Scale-student (UWES-S), College Student Mobile Phone Dependence Questionnaire (CSMPDQ), and Academic Burnout Questionnaire (ABQ). To examine the hypothesis of mediating and moderating effect, SPSS PROCESS was utilized. Results: The predictive effect of mobile phone dependence on academic burnout was significant (ß = 0.410, t = 14.236, p < 0.001), and the predictive effect of mobile phone dependence on academic burnout remained significant when the mediating variable study engagement was introduced (ß = 0.308, t = 10.288, p < 0.001), mobile phone dependence had a significant predictive effect on study engagement (ß = -0.292, t = -11.639, p < 0.001), and study engagement had a significant positive predictive effect on academic burnout (ß = -0.270, t = -9.028, p < 0.001). Love significantly negatively predicted study engagement (ß = -0.564, t = -9.641, p < 0.001); and the interaction term for mobile phone dependence and love was significant (ß = -0.211, t = -3.688, p < 0.001), indicating a significant moderating effect of love between mobile phone dependence and study engagement. Conclusion: Mobile phones among college students has been found to have a direct correlation with academic burnout. It can also indirectly contribute to academic burnout by diminishing levels of academic engagement. This indirect relationship is further influenced by love. These findings can help researchers and educators better understand the underlying mechanisms between smartphone dependence and learning burnout in undergraduates.

6.
Bioinformatics ; 40(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741151

RESUMO

MOTIVATION: Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS: We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION: The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.


Assuntos
Teorema de Bayes , Fluxo de Trabalho , Animais , Ratos , Humanos , Camundongos , Biologia de Sistemas/métodos , Fígado/metabolismo , Software , Imageamento por Ressonância Magnética/métodos
7.
Small Methods ; 8(8): e2301378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38326028

RESUMO

The improvement of photocatalytic activity of g-C3N4 is expected for its advanced applications but remains a challenge due to the limitations of current strategies, such as single function, inefficiency, and uneconomical. Herein, a modified g-C3N4 with improved interface properties is constructed through the modulation of the ionic microenvironment affected by ionic liquids (ILs) and exhibits a 2.3-fold enhanced photodegradation efficiency and a 3.5-fold enhanced reaction rate relative to pristine g-C3N4. It has demonstrated excellent performance in photo-therapy bacterial-infected wounds. Theoretical calculation indicated that the precursor can be regulated by designing the specific ILs microenvironment to form "ILs-Mel" clusters due to the diversity of interaction energy and electrostatic potential. The cluster results in uneven stress on the 2D plane, further inducing the reconstruction of the microstructure. The synergistic effect of cations and anions of ILs on regulating the interface properties of g-C3N4 due to the change of skeleton structure during thermolysis of ILs. The microstructure, surface, and optical-electrical properties can be adjusted by selecting different cations of ILs, and the custom-made band structure and wettability can be obtained by selecting different anions. This work provides a facile strategy to modulate the interface properties of g-C3N4 by building specific a microenvironment of precursor.


Assuntos
Líquidos Iônicos , Fotólise , Cicatrização , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Cicatrização/efeitos dos fármacos , Compostos de Nitrogênio/química , Nitrilas/química , Nitrilas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Infecção dos Ferimentos/tratamento farmacológico , Grafite
8.
Angew Chem Int Ed Engl ; 62(52): e202314303, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37942727

RESUMO

Transition metal single atom electrocatalysts (SACs) with metal-nitrogen-carbon (M-N-C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin-dependent electrons must be allowed to transfer along reactants (OH- /H2 O, singlet spin state) and products (O2 , triplet spin state). Therefore, it is imperative to modulate the spin configuration in M-N-C to enhance the spin-sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main-group element (Mg) into the Fe-N-C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in-plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy 2 dxz 2 dyz 1 dz2 1 , 2.96 µB ) to low spin (dxy 2 dxz 2 dyz 2 , 0.95 µB ), and consequently regulate the thermodyna-mics of the elementary step with desired Gibbs free energies. The as-obtained Mg/Fe dual-site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm-2 and an electrolysis voltage of only 1.542 V at 10 mA cm-2 in the overall water splitting, which outperforms those of the state-of-the-art transition metal SACs.

9.
J Magn Reson Imaging ; 58(6): 1954-1963, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37026419

RESUMO

BACKGROUND: Preventing sepsis-associated acute kidney injury (S-AKI) can be challenging because it develops rapidly and is often asymptomatic. Probability assessment of disease progression for therapeutic follow-up and outcome are important to intervene and prevent further damage. PURPOSE: To establish a noninvasive multiparametric MRI (mpMRI) tool, including T1 , T2 , and perfusion mapping, for probability assessment of the outcome of S-AKI. STUDY TYPE: Preclinical randomized prospective study. ANIMAL MODEL: One hundred and forty adult female SD rats (65 control and 75 sepsis). FIELD STRENGTH/SEQUENCE: 9.4T; T1 and perfusion map (FAIR-EPI) and T2 map (multiecho RARE). ASSESSMENT: Experiment 1: To identify renal injury in relation to sepsis severity, serum creatinine levels were determined (31 control and 35 sepsis). Experiment 2: Animals underwent mpMRI (T1 , T2 , perfusion) 18 hours postsepsis. A subgroup of animals was immediately sacrificed for histology examination (nine control and seven sepsis). Result of mpMRI in follow-up subgroup (25 control and 33 sepsis) was used to predict survival outcomes at 96 hours. STATISTICAL TESTS: Mann-Whitney U test, Spearman/Pearson correlation (r), P < 0.05 was considered statistically significant. RESULTS: Severely ill septic animals exhibited significantly increased serum creatinine levels compared to controls (70 ± 30 vs. 34 ± 9 µmol/L, P < 0.0001). Cortical perfusion (480 ± 80 vs. 330 ± 140 mL/100 g tissue/min, P < 0.005), and cortical and medullary T2 relaxation time constants were significantly reduced compared to controls (41 ± 4 vs. 37 ± 5 msec in cortex, P < 0.05, 52 ± 7 vs. 45 ± 6 msec in medulla, P < 0.05). The combination of cortical T2 relaxation time constants and perfusion results at 18 hours could predict survival outcomes at 96 hours with high sensitivity (80%) and specificity (73%) (area under curve of ROC = 0.8, Jmax = 0.52). DATA CONCLUSION: This preclinical study suggests combined T2 relaxation time and perfusion mapping as first line diagnostic tool for treatment planning. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Injúria Renal Aguda , Sepse , Feminino , Ratos , Animais , Estudos Prospectivos , Creatinina , Ratos Sprague-Dawley , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/patologia , Imageamento por Ressonância Magnética , Perfusão , Sepse/complicações , Sepse/diagnóstico por imagem
10.
Nanoscale Horiz ; 8(6): 812-826, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37016980

RESUMO

Exploring eco-friendly and cost-effective strategies for structure engineering at the nanoscale is important for boosting heterogeneous catalysis but still under a long-standing challenge. Herein, multifunctional polyphenol tannic acid, a low-cost natural biomass containing catechol and galloyl species, was employed as a green reducing agent, chelating agent, and stabilizer to prepare Au nanoparticles, which were dispersed on different-shaped CeO2 supports (e.g., rod, flower, cube, and octahedral). Systematic characterizations revealed that Au/CeO2-rod had the highest oxygen vacancy density and Ce(III) proportion, favoring the dispersion and stabilization of the metal active sites. Using isopropanol as a hydrogen-transfer reagent, deep insights into the structure-activity relationship of the Au/CeO2 catalysts with various morphologies of CeO2 in the catalytic nitrobenzene transfer hydrogenation reaction were gained. Notably, the catalytic performance followed the order: Au/CeO2-rod (110), (100), (111) > Au/CeO2-flower (100), (111) > Au/CeO2-cube (100) > Au/CeO2-octa (111). Au/CeO2-rod displayed the highest conversion of 100% nitrobenzene and excellent stability under optimal conditions. Moreover, DFT calculations indicated that nitrobenzene molecules had a suitable adsorption energy and better isopropanol dehydrogenation capacity on the Au/CeO2 (110) surface. A reaction pathway and the synergistic catalytic mechanism for catalytic nitrobenzene transfer hydrogenation are proposed based on the results. This work demonstrates that CeO2 structure engineering is an efficient strategy for fabricating advanced and environmentally benign materials for nitrobenzene hydrogenation.

11.
Mar Pollut Bull ; 185(Pt A): 114192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356341

RESUMO

The 'taxonomic sufficiency' (TS) approach has been applied to algae, protists, invertebrates, and vertebrates, generally by aggregating species-level abundance data to a higher taxonomic level, where genus-level data are often highly correlated with species-level data and are a valid proxy level. The TS approach offers the possibility of a comparison of data from different geographical areas and highlights the effects of contaminants. The TS approach is stable in the face of different researchers and in the comparison of long-term biological survey data. The effectiveness of the TS approach may increase with increasing environmental gradients or spatial area. The TS approach should be avoided when the spatial area is small and small differences in species-level data are considered important, so as not to cancel out the distribution patterns specific to the local environment of the biological taxa.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Eucariotos , Plantas , Meio Ambiente , Biodiversidade , Ecossistema
12.
Mar Pollut Bull ; 176: 113471, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35240459

RESUMO

A total of 91 species of zooplankton were sampled from the South Yellow Sea in the summer and autumn of 2019. Copepods were the predominant arthropods. The summer sample (81) contained higher species diversity than the autumn (70). In both seasons, Calanus sinicus, Sagitta enflata, S. crassa, Doliolum denticulatum, and Macrura larva were dominant species. The average abundance of zooplankton in summer and autumn was 424.9 and 52.6 ind./m3, respectively, and the biomass was 207.7 and 107.6 mg/m3, respectively. The Shannon-Wiener index (H') in summer was higher than that in autumn, while the Pielou index (J') and Margalef index (D') were lower than those in autumn. BIOENV showed that water temperature (ST), dissolved oxygen (DO), turbidity (Tur), and tetrabromobisphenol A (TBBPA) affected the zooplankton community structure in the South Yellow Sea. The concentration of TBBPA increased from offshore to nearshore, with a significant negative impact on diversity in summer.


Assuntos
Copépodes , Água do Mar/microbiologia , Zooplâncton , Animais , Biomassa , China , Estações do Ano , Temperatura
13.
Adv Mater ; 34(14): e2108847, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35102635

RESUMO

2D van der Waals (vdW) transition-metal oxyhalides with low symmetry, novel magnetism, and good stability provide a versatile platform for conducting fundamental research and developing spintronics. Antiferromagnetic FeOCl has attracted significant interest owing to its unique semiconductor properties and relatively high Néel temperature. Herein, good-quality centimeter-scale FeOCl single crystals are controllably synthesized using the universal temperature-oscillation chemical vapor transport (TO-CVT) method. The crystal structure, bandgap, and anisotropic behavior of the 2D FeOCl are explored in detail. The absorption spectrum and electrical measurements reveal that 2D FeOCl is a semiconductor with an optical bandgap of ≈2.1 eV and a resistivity of ≈10-1  Ω m at 295 K, and the bandgap increases with decreasing thickness. Strong in-plane optical and electrical anisotropies are observed in 2D FeOCl flakes, and the maximum resistance anisotropic ratio reaches 2.66 at 295 K. Additionally, the lattice vibration modes are studied through temperature-dependent Raman spectra and first-principles density functional calculations. A significant decrease in the Raman frequencies below the Néel temperature is observed, which results from the strong spin-phonon coupling effect in 2D FeOCl. This study provides a high-quality low-symmetry vdW magnetic candidate for miniaturized spintronics.

14.
Chem Asian J ; 16(21): 3371-3384, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431617

RESUMO

The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2 -Rods and CuO/CeO2 -Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2 -Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2 -Cubes. This can be connected with the higher density of oxygen vacancy on CeO2 -Rods (110) than CeO2 -Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2 -Rods at the interfacial positions and facilitates the electron transfer from BH4 - to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2 , while H2 from BH4 - dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.

15.
Sleep ; 44(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918076

RESUMO

STUDY OBJECTIVES: Mobility restrictions imposed to suppress transmission of COVID-19 can alter physical activity (PA) and sleep patterns that are important for health and well-being. Characterization of response heterogeneity and their underlying associations may assist in stratifying the health impact of the pandemic. METHODS: We obtained wearable data covering baseline, incremental mobility restriction, and lockdown periods from 1,824 city-dwelling, working adults aged 21-40 years, incorporating 206,381 nights of sleep and 334,038 days of PA. Distinct rest-activity rhythm (RAR) profiles were identified using k-means clustering, indicating participants' temporal distribution of step counts over the day. Hierarchical clustering of the proportion of days spent in each of these RAR profiles revealed four groups who expressed different mixtures of RAR profiles before and during the lockdown. RESULTS: Time in bed increased by 20 min during the lockdown without loss of sleep efficiency, while social jetlag measures decreased by 15 min. Resting heart rate declined by ~2 bpm. PA dropped an average of 42%. Four groups with different compositions of RAR profiles were found. Three were better able to maintain PA and weekday/weekend differentiation during lockdown. The least active group comprising ~51% of the sample, were younger and predominantly singles. Habitually less active already, this group showed the greatest reduction in PA during lockdown with little weekday/weekend differences. CONCLUSION: In the early aftermath of COVID-19 mobility restriction, PA appears to be more severely affected than sleep. RAR evaluation uncovered heterogeneity of responses to lockdown that could associate with different outcomes should the resolution of COVID-19 be protracted.


Assuntos
COVID-19/fisiopatologia , Controle de Doenças Transmissíveis , Exercício Físico , Sono , Adulto , COVID-19/epidemiologia , Cidades , Feminino , Humanos , Síndrome do Jet Lag/epidemiologia , Masculino , Pandemias , Adulto Jovem
16.
Commun Biol ; 3(1): 755, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311586

RESUMO

Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10-16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10-19), TMPRSS5 (rs4936279, P = 2.5 × 10-10), LINC01412 (rs16823886, P = 1.3 × 10-9), GLTSCR1 (rs1005911, P = 9.8 × 10-9), and COMMD1 (rs62149908, P = 1.2 × 10-8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


Assuntos
Catarata/etiologia , Predisposição Genética para Doença , Variação Genética , Fatores de Transcrição SOXB1/genética , Alelos , Catarata/diagnóstico , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
17.
Ophthalmology ; 127(12): 1612-1624, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32428537

RESUMO

PURPOSE: To identify novel susceptibility loci for high myopia. DESIGN: Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS: A total of 14 096 samples from East and Southeast Asian populations (2549 patients with high myopia and 11 547 healthy controls). METHODS: We performed a GWAS in 3269 Japanese individuals (1668 with high myopia and 1601 control participants), followed by replication analysis in a total of 10 827 additional samples (881 with high myopia and 9946 control participants) from Japan, Singapore, and Taiwan. To confirm the biological role of the identified loci in the pathogenesis of high myopia, we performed functional annotation and Gene Ontology (GO) analyses. MAIN OUTCOME MEASURES: We evaluated the association of single nucleotide polymorphisms with high myopia and GO terms enriched among genes identified in the current study. RESULTS: We identified 9 loci with genome-wide significance (P < 5.0 × 10-8). Three loci were previously reported myopia-related loci (ZC3H11B on 1q41, GJD2 on 15q14, and RASGRF1 on 15q25.1), and the other 6 were novel (HIVEP3 on 1p34.2, NFASC/CNTN2 on 1q32.1, CNTN4/CNTN6 on 3p26.3, FRMD4B on 3p14.1, LINC02418 on 12q24.33, and AKAP13 on 15q25.3). The GO analysis revealed a significant role of the nervous system related to synaptic signaling, neuronal development, and Ras/Rho signaling in the pathogenesis of high myopia. CONCLUSIONS: The current study identified 6 novel loci associated with high myopia and demonstrated an important role of the nervous system in the disease pathogenesis. Our findings give new insight into the genetic factors underlying myopia, including high myopia, by connecting previous findings and allowing for a clarified interpretation of the cause and pathophysiologic features of myopia at the molecular level.


Assuntos
Povo Asiático/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Miopia Degenerativa/genética , Doenças do Sistema Nervoso/genética , Polimorfismo de Nucleotídeo Único , Feminino , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Singapura , Taiwan
18.
Sci Total Environ ; 715: 136966, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040999

RESUMO

The outdated test methodologies for terrestrial animals have limited the progress of soil ecotoxicology to some extent. To improve the behavioral testing of earthworms, a terrestrial model animal, a sensitive optical-based method for detecting locomotor activity was established. The method measured the fine quantified position offsets of each earthworm in place of a conventional overall response rate, which provided the feasibility for accurate analyses and comparisons. By setting appropriate thresholds, the time proportions of medium and burst states (mid-burdur%) could be an optimized endpoint with an ideal balance in output stability and sensitivity. In addition, we chose the head-end, which is the most flexible part of the earthworm, other than whole body to further elevate the sensitivity in indicating the changed traits. Using octopamine, serotonin, and a serial-dose of lindane exposure, the practice credibility of the test method was validated. Our developed locomotor test method overcame the innate characteristics of the earthworm, and was expected to provide a powerful phenotypic tool for ecological and ecotoxicological studies using earthworms and similar invertebrates.


Assuntos
Oligoquetos , Animais , Ecotoxicologia , Locomoção , Solo , Poluentes do Solo
19.
Polymers (Basel) ; 12(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948031

RESUMO

Detection of mercury (Hg2+) and sulfide (S2-), universal and well-known toxic ions, is crucial in monitoring several diseases. How to design and fabricate the high-performance sensor for simultaneously and accurately detecting the Hg2+ and S2- is critical. Herein, we proposed a novel and convenient strategy for optical detection of Hg2+ and S2- by employing a carboxymethyl cellulose sodium/silver nanoparticle (CMS/AgNPs) colloidal solution, in which AgNPs were used as monitor for Hg2+ and S2-, and the CMS was utilized as both the stabilizer and the hydrophilic substrate for AgNPs. Well-identifiable peaks for Hg2+ and S2- were obtained in water based on UV-VIS absorption spectra, the absorbance intensity and/or position of nano-silver vary with the addition of Hg2+ cation and S2- anion, accompanying with color change. Impressively, the optimal AgNPs anchored CMS exhibited a high sensitivity and selectivity toward Hg2+ and S2-, the change in absorbance was linear with the concentration of Hg2+ (0-50 µM) and S2- (15-70 µM), and the lowest limits of detection (LOD) were 1.8 × 10-8 M and 2.4 × 10-7 M, respectively. More importantly, owing to the superior properties in testing Hg2+ and S2-, the fabricated sensor was successfully applied for detection of target ions in lake and tap water samples. All these good results implied that the designed strategy and as-designed samples is promising in detecting cation (Hg2+) and anion (S2-) ions and open up new opportunities for selecting other kinds of ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA