Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Synth Syst Biotechnol ; 9(4): 723-732, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38882181

RESUMO

Acetic acid is a common inhibitor present in lignocellulose hydrolysate, which inhibits the ethanol production by yeast strains. Therefore, the cellulosic ethanol industry requires yeast strains that can tolerate acetic acid stress. Here we demonstrate that overexpressing a yeast native arginase-encoding gene, CAR1, renders Saccharomyces cerevisiae acetic acid tolerance. Specifically, ethanol yield increased by 27.3% in the CAR1-overexpressing strain compared to the control strain under 5.0 g/L acetic acid stress. The global intracellular amino acid level and compositions were further analyzed, and we found that CAR1 overexpression reduced the total amino acid content in response to acetic acid stress. Moreover, the CAR1 overexpressing strain showed increased ATP level and improved cell membrane integrity. Notably, we demonstrated that the effect of CAR1 overexpression was independent of the spermidine and proline metabolism, which indicates novel mechanisms for enhancing yeast stress tolerance. Our studies also suggest that CAR1 is a novel genetic element to be used in synthetic biology of yeast for efficient production of fuel ethanol.

2.
Metab Eng ; 84: 117-127, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901555

RESUMO

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.

3.
Biotechnol Adv ; 73: 108372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38714276

RESUMO

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Eletrólise , Anaerobiose , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos , Metano/metabolismo
4.
Bioresour Technol ; 402: 130774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701983

RESUMO

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.


Assuntos
Biomassa , Corynebacterium glutamicum , Formiatos , Engenharia Metabólica , Ácido Succínico , Corynebacterium glutamicum/metabolismo , Formiatos/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Fermentação , Modelos Biológicos , Glucose/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
6.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539794

RESUMO

The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.

7.
Curr Opin Biotechnol ; 86: 103072, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330874

RESUMO

Yeast is widely studied in producing biofuels and biochemicals using renewable biomass. Among various yeasts, Saccharomyces cerevisiae has been particularly recognized as an important yeast cell factory. However, economic bioproduction using S. cerevisiae is challenged by harsh environments during fermentation, among which inhibitory chemicals in the culture media or toxic products are common experiences. Understanding the stress-responsive mechanisms is conducive to developing robust yeast strains. Here, we review recent progress in mechanisms underlying yeast stress response, including regulation of cell wall integrity, membrane transport, antioxidative system, and gene transcription. We highlight epigenetic regulation of stress response and summarize manipulation of yeast stress tolerance for improved bioproduction. Prospects in the application of machine learning to improve production efficiency are also discussed.


Assuntos
Epigênese Genética , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Fermentação , Biocombustíveis
8.
J Proteome Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396335

RESUMO

Acetic acid is a prevalent inhibitor in lignocellulosic hydrolysate, which represses microbial growth and bioproduction. Histone modification and chromatin remodeling have been revealed to be critical for regulating eukaryotic metabolism. However, related studies in chronic acetic acid stress responses remain unclear. Our previous studies revealed that overexpression of the histone H4 methyltransferase Set5p enhanced acetic acid stress tolerance of the budding yeast Saccharomyces cerevisiae. In this study, we examined the role of Set5p in acetic acid stress by analyzing global protein expression. Significant activation of intracellular protein expression under the stress was discovered, and the functions of the differential proteins were mainly involved in chromatin modification, signal transduction, and carbohydrate metabolism. Notably, a substantial increase of Set5p expression was observed in response to acetic acid stress. Functional studies demonstrated that the restriction of the telomere capping protein Rtc3p, as well as Ies3p and Taf14p, which are related to chromatin regulation, was critical for yeast stress response. This study enriches the understanding of the epigenetic regulatory mechanisms underlying yeast stress response mediated by histone-modifying enzymes. The results also benefit the development of robust yeast strains for lignocellulosic bioconversion.

9.
Trends Biotechnol ; 42(4): 418-430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37858385

RESUMO

Lignocellulose is an alternative to fossil resources, but its biochemical conversion is not economically competitive. While decentralized processing can reduce logistical cost for this feedstock, sugar platforms need to be developed with energy-saving pretreatment technologies and cost-effective cellulases, and products must be selected correctly. Anaerobic fermentation with less energy consumption and lower contamination risk is preferred, particularly for producing biofuels. Great effort has been devoted to producing cellulosic ethanol, but CO2 released with large quantities during ethanol fermentation must be utilized in situ for credit. Unless titer and yield are improved substantially, butanol cannot be produced as an advanced biofuel. Microbial lipids produced through aerobic fermentation with low yield and intensive energy consumption are not affordable as feedstocks for biodiesel production.


Assuntos
Etanol , Lignina , Lignina/metabolismo , Etanol/metabolismo , Fermentação , Butanóis , Biocombustíveis
10.
Int J Biol Macromol ; 258(Pt 2): 129041, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154715

RESUMO

Chromatin remodelers are important in maintaining the dynamic chromatin state in eukaryotic cells, which is essential for epigenetic regulation. Among the remodelers, the multi-subunits complex INO80 plays crucial roles in transcriptional regulation. However, current knowledge of chromatin regulation of the core subunit Ino80 on stress adaptation remains mysterious. Here we revealed that overexpressing the chromatin remodeler Ino80 elevated tolerance to multiple stresses in budding yeast Saccharomyces cerevisiae. Analyses of differential chromatin accessibility and global transcription levels revealed an enrichment of genes involved in NCR (nitrogen catabolite repression) under acetic acid stress. We demonstrated that Ino80 overexpression reduced the histone H3 occupancy in the promoter region of the glutamate dehydrogenase gene GDH2 and the allantoinase gene DAL1. Consistently, the decreased occupancy of nucleosome was revealed in the Ino80-inactivation mutant. Further analyses showed that Ino80 was recruited to the specific DNA locus in the promoter region of GDH2. Consistently, Ino80 overexpression facilitated the utilization of non-preferred nitrogen source to enhance ethanol yield under prolonged acetic acid stress. These results demonstrate that Ino80 plays a crucial role in coordinating carbon and nitrogen metabolism during stress adaptation.


Assuntos
Repressão Catabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Epigênese Genética , Nucleossomos , Acetatos/metabolismo
11.
BMC Genomics ; 24(1): 661, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919660

RESUMO

Microproteins, prevalent across all kingdoms of life, play a crucial role in cell physiology and human health. Although global gene transcription is widely explored and abundantly available, our understanding of microprotein functions using transcriptome data is still limited. To mitigate this problem, we present a database, Mip-mining ( https://weilab.sjtu.edu.cn/mipmining/ ), underpinned by high-quality RNA-sequencing data exclusively aimed at analyzing microprotein functions. The Mip-mining hosts 336 sets of high-quality transcriptome data from 8626 samples and nine representative living organisms, including microorganisms, plants, animals, and humans, in our Mip-mining database. Our database specifically provides a focus on a range of diseases and environmental stress conditions, taking into account chemical, physical, biological, and diseases-related stresses. Comparatively, our platform enables customized analysis by inputting desired data sets with self-determined cutoff values. The practicality of Mip-mining is demonstrated by identifying essential microproteins in different species and revealing the importance of ATP15 in the acetic acid stress tolerance of budding yeast. We believe that Mip-mining will facilitate a greater understanding and application of microproteins in biotechnology. Moreover, it will be beneficial for designing therapeutic strategies under various biological conditions.


Assuntos
Biotecnologia , Transcriptoma , Animais , Humanos , Análise de Sequência de RNA , Micropeptídeos
12.
Crit Rev Biotechnol ; : 1-21, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035670

RESUMO

Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.

13.
ACS Synth Biol ; 12(10): 2897-2908, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681736

RESUMO

Bioethanol has gained popularity in recent decades as an ecofriendly alternative to fossil fuels due to increasing concerns about global climate change. However, economically viable ethanol fermentation remains a challenge. High-temperature fermentation can reduce production costs, but Saccharomyces cerevisiae yeast strains normally ferment poorly under high temperatures. In this study, we present a machine learning (ML) approach to optimize bioethanol production in S. cerevisiae by fine-tuning the promoter activities of three endogenous genes. We created 216 combinatorial strains of S. cerevisiae by replacing native promoters with five promoters of varying strengths to regulate ethanol production. Promoter replacement resulted in a 63% improvement in ethanol production at 30 °C. We created an ML-guided workflow by utilizing XGBoost to train high-performance models based on promoter strengths and cellular metabolite concentrations obtained from ethanol production of 216 combinatorial strains at 30 °C. This strategy was then applied to optimize ethanol production at 40 °C, where we selected 31 strains for experimental fermentation. This reduced experimental load led to a 7.4% increase in ethanol production in the second round of the ML-guided workflow. Our study offers a comprehensive library of promoter strength modifications for key ethanol production enzymes, showcasing how machine learning can guide yeast strain optimization and make bioethanol production more cost-effective and efficient. Furthermore, we demonstrate that metabolic engineering processes can be accelerated and optimized through this approach.


Assuntos
Etanol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Temperatura , Etanol/metabolismo , Fermentação , Regiões Promotoras Genéticas/genética
14.
mSystems ; 8(5): e0024523, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37712700

RESUMO

IMPORTANCE: Due to their small size and special chemical features, small open reading frame (smORF)-encoding peptides (SEPs) are often neglected. However, they may play critical roles in regulating gene expression, enzyme activity, and metabolite production. Studies on bacterial microproteins have mainly focused on pathogenic bacteria, which are importance to systematically investigate SEPs in streptomycetes and are rich sources of bioactive secondary metabolites. Our study is the first to perform a global identification of smORFs in streptomycetes. We established a peptidogenomic workflow for non-model microbial strains and identified multiple novel smORFs that are potentially linked to secondary metabolism in streptomycetes. Our multi-integrated approach in this study is meaningful to improve the quality and quantity of the detected smORFs. Ultimately, the workflow we established could be extended to other organisms and would benefit the genome mining of microproteins with critical functions for regulation and engineering useful microorganisms.


Assuntos
Streptomyces , Streptomyces/genética , Fases de Leitura Aberta/genética , Metabolismo Secundário , Peptídeos/genética , Genoma
15.
Biotechnol Bioeng ; 120(11): 3234-3243, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526330

RESUMO

Zymomonas mobilis is an emerging chassis for being engineered to produce bulk products due to its unique glycolysis through the Entner-Doudoroff pathway with less ATP produced for lower biomass accumulation and higher product yield. When self-flocculated, the bacterial cells are more productive, since they can self-immobilize within bioreactors for high density, and are more tolerant to stresses for higher product titers, but this morphology needs to be controlled properly to avoid internal mass transfer limitation associated with their strong self-flocculation. Herewith we explored the regulation of cyclic diguanosine monophosphate (c-di-GMP) on self-flocculation of the bacterial cells through activating cellulose biosynthesis. While ZMO1365 and ZMO0919 with GGDEF domains for diguanylate cyclase activity catalyze c-di-GMP biosynthesis, ZMO1487 with an EAL domain for phosphodiesterase activity catalyzes c-di-GMP degradation, but ZMO1055 and ZMO0401 contain the dual domains with phosphodiesterase activity predominated. Since c-di-GMP is synthesized from GTP, the intracellular accumulation of this signal molecule through deactivating phosphodiesterase activity is preferred for activating cellulose biosynthesis to flocculate the bacterial cells, because such a strategy exerts less perturbance on intracellular processes regulated by GTP. These discoveries are significant for not only engineering unicellular Z. mobilis strains with the self-flocculating morphology to boost production but also understanding mechanism underlying c-di-GMP biosynthesis and degradation in the bacterium.

16.
Bioresour Technol ; 387: 129629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558099

RESUMO

L-malic acid (MA) is a vital platform chemical with huge market demand because of its broad industrial applications. A cell factory for MA production was engineered by strengthening the intrinsic pathway without inserting foreign genes into Trichoderma reesei. The native MA transporter gene in the T. reesei genome was characterized (trmae1), and its overexpression significantly improved MA production, which increased from 2 to 56.24 g/L. Native pyruvate carboxylase, malate dehydrogenase, malic enzyme, and glucose transporter were overexpressed further to improve the titer and yield of MA production. Fungal morphology was adapted to produce MA in the fermenter by deleting gul1. A titer of 235.8 g/L MA was produced from the final engineered strain in a 5-L fermenter with a yield of 1.48 mol of MA per mol of glucose and productivity of 1.23 g/L/h. This study provides novel insights for understanding and remodeling the MA synthesis pathway.


Assuntos
Hypocreales , Trichoderma , Malatos/metabolismo , Hypocreales/metabolismo , Reatores Biológicos , Trichoderma/metabolismo
17.
Bioresour Technol ; 385: 129449, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406833

RESUMO

Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.


Assuntos
Celulase , Celulase/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Biomassa , Biocombustíveis
18.
Biotechnol Adv ; 68: 108222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516259

RESUMO

Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.


Assuntos
Plásticos Biodegradáveis , Poli-Hidroxialcanoatos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biodegradação Ambiental , Poli-Hidroxialcanoatos/metabolismo , Alimentos
19.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2231-2247, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37401592

RESUMO

Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.


Assuntos
Compostos Orgânicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Carboxílicos/metabolismo , Engenharia Metabólica , Fermentação , Ácidos
20.
Bioresour Technol ; 385: 129375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352987

RESUMO

Biorefinery can be promoted by building accurate machine learning models. This work proposed a strategy to enhance model's generalization ability and overcome insufficient data conditions for mixed sugar fermentation simulation. Multiple inputs single output models, using initial glucose, initial xylose, and time together as inputs, have higher generalization ability than single input single output models with time as sole input in predicting glucose, xylose, ethanol, or biomass separately. Multiple inputs multiple outputs models, integrating outputs, enhanced model accuracy and resulted in an average R2 at 0.99. To overcome data insufficiency conditions, consensus yeast (CY) model, through consolidating data from 4 yeasts, obtained R2 at 0.90. By adjusting the pretrained CY model, the model can save more than 50% data and get R2 at 0.95 and 0.93 for yeast and bacterial fermentation simulation. The strategy can expand the application range and save costs of data curation for ANN models.


Assuntos
Saccharomyces cerevisiae , Xilose , Fermentação , Glucose , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA