Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(5): 1519-1534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308022

RESUMO

In the endoscopic images of bladder, accurate segmentation of different grade bladder tumor from blurred boundary regions and highly variable shapes is of great significance for doctors' diagnosis and patients' later treatment. We propose a nested attentional feature fusion segmentation network (NAFF-Net) based on the encoder-decoder structure formed by the combination of weighted pyramid pooling module (WPPM) and nested attentional feature fusion (NAFF). Among them, WPPM applies the cascade of atrous convolution to enhance the overall perceptual field while introducing adaptive weights to optimize multi-scale feature extraction, NAFF integrates deep semantic information into shallow feature maps, effectively focusing on edge and detail information in bladder tumor images. Additionally, a weighted mixed loss function is constructed to alleviate the impact of imbalance between positive and negative sample distribution on segmentation accuracy. Experiments illustrate the proposed NAFF-Net achieves better segmentation results compared to other mainstream models, with a MIoU of 84.05%, MPrecision of 91.52%, MRecall of 90.81%, and F1-score of 91.16%, and also achieves good results on the public datasets Kvasir-SEG and CVC-ClinicDB. Compared to other models, NAFF-Net has a smaller number of parameters, which is a significant advantage in model deployment.


Assuntos
Médicos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Semântica , Processamento de Imagem Assistida por Computador
2.
Health Inf Sci Syst ; 11(1): 58, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028959

RESUMO

As medical treatments continue to advance rapidly, minimally invasive surgery (MIS) has found extensive applications across various clinical procedures. Accurate identification of medical instruments plays a vital role in comprehending surgical situations and facilitating endoscopic image-guided surgical procedures. However, the endoscopic instrument detection poses a great challenge owing to the narrow operating space, with various interfering factors (e.g. smoke, blood, body fluids) and inevitable issues (e.g. mirror reflection, visual obstruction, illumination variation) in the surgery. To promote surgical efficiency and safety in MIS, this paper proposes a cross-layer aggregated attention detection network (CLAD-Net) for accurate and real-time detection of endoscopic instruments in complex surgical scenarios. We propose a cross-layer aggregation attention module to enhance the fusion of features and raise the effectiveness of lateral propagation of feature information. We propose a composite attention mechanism (CAM) to extract contextual information at different scales and model the importance of each channel in the feature map, mitigate the information loss due to feature fusion, and effectively solve the problem of inconsistent target size and low contrast in complex contexts. Moreover, the proposed feature refinement module (RM) enhances the network's ability to extract target edge and detail information by adaptively adjusting the feature weights to fuse different layers of features. The performance of CLAD-Net was evaluated using a public laparoscopic dataset Cholec80 and another set of neuroendoscopic dataset from Sun Yat-sen University Cancer Center. From both datasets and comparisons, CLAD-Net achieves the AP0.5 of 98.9% and 98.6%, respectively, that is better than advanced detection networks. A video for the real-time detection is presented in the following link: https://github.com/A0268/video-demo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA