Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Appl Opt ; 63(1): 93-103, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175013

RESUMO

The characteristics of laser beam propagation within a diamond tool critically influence the applied thermal softening capability of in situ laser-assisted diamond turning (In-LAT). In the present work, we perform optical geometric analysis, optical simulation and experimental validation to propose a novel diamond tool configuration for precisely tailoring laser beam propagation in In-LAT. First, the characteristics of laser beam propagation in the current In-LAT diamond tool are theoretically and experimentally explored. Second, according to the issues discovered in the current In-LAT diamond tool, an improved tool configuration based on the total internal reflection of a laser beam within the diamond tool is proposed, aiming for promoting refraction of the laser beam from the rake face of the diamond tool as well as eliminating the reflection of laser beam to tool holder. Finally, the optimization of laser beam incident position is carried out for achieving the superior profile and intensity of the emitted laser spot. Current work provides rational laser beam propagation for improving the thermal-softening capability of an In-LAT diamond tool.

2.
J Med Virol ; 95(10): e29136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37804496

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron harbors more than 30 mutations of the spike protein and exhibits substantial immune evasion. Although previous study indicated that BNT162b2 messenger RNA vaccine induces potent cross-clade pan-sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, the neutralization activity and Fc-mediated effector functions of these cross-reactive antibodies elicited in SARS-CoV-1 survivors to Omicron subvariants still remain largely unknown. In this study, the neutralization activity and Fc-mediated effector functions of antibodies boosted by a third dose vaccination were characterized in SARS-CoV-1 convalescents and healthy individuals. Potent cross-clade broadly neutralizing antibodies were observed in SARS-CoV-1 survivors who received a three-dose vaccination regimen consisting of two priming doses of CoronaVac followed by one booster dose of the protein subunit vaccine ZF2001. However, the induced antibodies exhibited both reduced neutralization and impaired Fc effector functions targeting multiple Omicron subvariants. Importantly, the data also support the notion that immune imprints resulted from SARS-CoV-1 infection may exacerbate the impairment of neutralization activity and Fc-mediated effector functions to Omicron subvariants and provided invaluable information to vaccination strategy in future.


Assuntos
Vacina BNT162 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Vacinas de Subunidades Antigênicas , SARS-CoV-2 , Sobreviventes , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Virol ; 97(9): e0060123, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676001

RESUMO

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Assuntos
Antígenos CD13 , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Cães , Humanos , Coelhos , Antígenos CD13/metabolismo , Quirópteros/virologia , Coronavirus/fisiologia , Pneumonia , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Clin Chem Lab Med ; 61(6): 1123-1130, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36656975

RESUMO

OBJECTIVES: To describe a high-sensitivity SARS-CoV-2 antigen test that is based on the fully automated light-initiated chemiluminescent immunoassay (LiCA®), and to validate its analytical characteristics and clinical agreement on detecting SARS-CoV-2 infection against the reference molecular test. METHODS: Analytical performance was validated and detection limits were determined using different types of nucleocapsid protein samples. 798-pair anterior nasal swab specimens were collected from hospitalized patients and asymptomatic screening individuals. Agreement between LiCA® antigen and real-time reverse transcription polymerase chain reaction (rRT-PCR) was evaluated. RESULTS: Repeatability and within-lab precision were 1.6-2.3%. The C5∼C95 interval was -5.1-4.6% away from C50. Detection limits in average (SD) were 325 (±141) U/mL on the national reference panel, 0.07 (±0.04) TCID50/mL on active viral cultures, 0.27 (±0.09) pg/mL on recombinant nucleocapsid proteins and 1.07 (±1.01) TCID50/mL on inactivated viral suspensions, respectively. LiCA detected a median of 374-fold (IQR 137-643) lower levels of the viral antigen than comparative rapid tests. As reference to the rRT-PCR method, overall sensitivity and specificity were determined to be 97.5% (91.4-99.7%) and 99.9% (99.2-100%), respectively. Total agreement between both methods was 99.6% (98.7-99.9%) with Cohen's kappa 0.98 (0.96-1). A positive detection rate of 100% (95.4-100%) was obtained as Ct≤37.8. CONCLUSIONS: The LiCA® system provides an exceptionally high-sensitivity and fully automated platform for the detection of the SARS-CoV-2 antigen in nasal swabs. The assay may have high potential use for large-scale population screening and surveillance of COVID-19 as an alternative to the rRT-PCR test.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19/métodos , Sensibilidade e Especificidade , Proteínas do Nucleocapsídeo/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Imunoensaio/métodos
5.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556715

RESUMO

Additive manufacturing technology has been widely used in aviation, aerospace, automobiles and other fields due to the fact that near-net-shaped components with unprecedented geometric freedom can be fabricated. Additively manufactured aluminum alloy has received a lot of attention, due to its excellent material properties. However, the finished surface of additively manufactured aluminum alloy with nanoscale surface roughness is quite challenging and rarely addressed. In this paper, a novel machining technology known as ultrasonic elliptical vibration-assisted cutting (UEVC) was adopted to suppress the generation of cracks, improve the surface integrity and reduce tool wear during the ultra-precision machining of selective laser melting (SLM) additively manufactured AlSi10Mg alloy. The experimental results revealed that, in the conventional cutting (CC) process, surface defects, such as particles, pores and grooves, appeared on the machined surface, and the machined surface rapidly deteriorated with the increase in cumulative cutting area. In contrast, an almost flawless machined surface was obtained in the UEVC process, and its roughness value was less than 10 nm. Moreover, the tool wear of the CC tool was remarkably greater than that of the UEVC tool, and the standard flank wear width of the CC tool was more than twice that of the UEVC tool. Therefore, the UEVC technology is considered to be a feasible method for the ultra-precision machining of SLM additively manufactured AlSi10Mg alloy.

6.
Micromachines (Basel) ; 13(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014260

RESUMO

While laser surface texturing is promising for the fabrication of planar surface microstructures, the continuously patterning with micrometer accuracy of non-planar surface on miniature parts with large curvature by laser ablation is challenging. In the present work, we demonstrate the feasibility of applying the proposed multi-axis laser milling in continuous patterning of 25 mm diameter spherical stainless steel with high uniformity and precision, based on a strategy of simultaneously adjusting the position and the posture of laser-surface interaction point for enabling the constant coincidence of laser beam with ablated surface normal. Specifically, a miniaturized five-axis platform for controlling workpiece motion with high degree-of-freedom is designed and integrated with a fixed nanosecond pulsed laser beam operating at 1064 nm. The precise path of laser-surface interaction point is derived based on the projection and transformation of pre-determined planar pattern on spherical surface. Meanwhile, a virtual prototype of the multi-axis laser milling with embedded interpolation algorithm is established, which enables the generation of NC codes for subsequent laser milling experiments. Furthermore, the sampling of laser processing parameters particularly for spherical surface is carried out. Finally, complex patterns are continuously structured on the spherical surface by employing the proposed multi-axis laser milling method, and subsequent characterization demonstrates both long range uniformity and local high accuracy of the fabricated patterns. Current work provides a feasible method for the continuous laser surface texturing of non-planar surfaces for miniature parts with large curvature.

7.
Cell Rep ; 38(2): 110205, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34982968

RESUMO

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.


Assuntos
COVID-19/virologia , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Genoma Viral/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Glicoproteína da Espícula de Coronavírus/genética , Desenvolvimento de Vacinas/métodos , Adulto Jovem
8.
J Mol Biol ; 434(6): 167438, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34990653

RESUMO

Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.


Assuntos
Antivirais , Infecções por Coronavirus , Coronavirus , Desenvolvimento de Medicamentos , Evasão da Resposta Imune , Interferon Tipo I , Desenvolvimento de Vacinas , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/prevenção & controle , Coronavirus/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Interferon Tipo I/uso terapêutico , SARS-CoV-2/imunologia
10.
Vaccines (Basel) ; 9(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960204

RESUMO

The administration of COVID-19 vaccines is the primary strategy used to prevent further infections by COVID-19, especially in people living with HIV (PLWH), who are at increased risk for severe symptoms and mortality. However, the vaccine hesitancy, safety, and immunogenicity of COVID-19 vaccines among PLWH have not been fully characterized. We estimated vaccine hesitancy and status of COVID-19 vaccination in Chinese PLWH, explored the safety and impact on antiviral therapy (ART) efficacy and compared the immunogenicity of an inactivated vaccine between PLWH and healthy controls (HC). In total, 27.5% (104/378) of PLWH hesitated to take the vaccine. The barriers included concerns about safety and efficacy, and physician counselling might help patients overcome this vaccine hesitancy. A COVID-19 vaccination did not cause severe side effects and had no negative impact on CD4+ T cell counts and HIV RNA viral load. Comparable spike receptor binding domain IgG titer were elicited in PLWH and HC after a second dose of the CoronaVac vaccine, but antibody responses were lower in poor immunological responders (CD4+ T cell counts < 350 cells/µL) compared with immunological responders (CD4+ T cell counts ≥ 350 cells/µL). These data showed that PLWH have comparable safety and immune response following inactivated COVID-19 vaccination compared with HC, but the poor immunological response in PLWH is associated with impaired humoral response.

11.
Micromachines (Basel) ; 12(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34683278

RESUMO

In this paper, a novel positioner fixture with a high repeated positioning accuracy and a high stiffness is proposed and investigated. A high-precision end-toothed disc is used to achieve the high repeated positioning accuracy of the designed positioner fixture. The mathematical models of the cumulative error of the tooth pitch, the tooth alignment error and the error of the tooth profile half-angle of the end-toothed disc are analyzed. The allowable tolerance values of the cumulative error of the tooth pitch, the tooth alignment error and the error of the tooth profile half-angle of the end-toothed disc are given. According to the theoretical calculation results, a prototype positioner fixture is fabricated and its repeated positioning accuracy and stiffness are tested. The test results indicate that the stiffness of the proposed positioner fixture is 1050.5 N/µm, which is larger than the previous positioner fixtures of the same type. The repeated positioning accuracy of the proposed positioner fixture in the x, y and z directions are ±0.48 µm, ±0.45 µm and ±0.49 µm, respectively, which is significantly higher than the previous positioner fixtures.

12.
Natl Sci Rev ; 8(4): nwab006, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34676097

RESUMO

After a short recovery period, COVID-19 reinfections could occur in convalescent patients, even those with measurable levels of neutralizing antibodies. Effective vaccinations and protective public health measures are recommended for the convalescent COVID-19 patients.

13.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696406

RESUMO

Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.


Assuntos
Infecções por Coronavirus/patologia , Coronavirus/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Gatos/virologia , Bovinos/virologia , Galinhas/virologia , Coronavirus/genética , Cães/virologia , Gado/virologia , Fusão de Membrana/fisiologia , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Suínos/virologia , Tropismo Viral/fisiologia
14.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209442

RESUMO

The manufacturing of precise surface microstructures with low cost is needed for surface texturing-based surface engineering. In this paper, a device for the fabrication of surface microgroove texture on stainless steel based on ultrasonic impact peening (UIP) is proposed and investigated. First, the principle of applying the UIP into the fabrication of surface texture is analytically described. Then, the design of the UIP device, particularly the design of functional systems and mechanical structures, is carried out. Next, a UIP experimental device is built, and is further applied to fabricate microgroove textures on 316L stainless steel. The subsequent experimental characterization of microgroove morphology demonstrates the feasibility of the designed UIP device for the fabrication of stainless steel surface texture.

15.
Acta Pharm Sin B ; 11(6): 1555-1567, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33614402

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become one major threat to human population health. The RNA-dependent RNA polymerase (RdRp) presents an ideal target of antivirals, whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus. Herein, we report that corilagin (RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp, binds directly to RdRp, effectively inhibits the polymerase activity in both cell-free and cell-based assays, fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration (EC50) value of 0.13 µmol/L. Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp. In addition, combination of RAI-S-37 with remdesivir exhibits additive activity against anti-SARS-CoV-2 RdRp. Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent, these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.

16.
Angew Chem Int Ed Engl ; 59(47): 21129-21134, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32737918

RESUMO

Scanning electrochemical microscopy (SECM) is one of the most important instrumental methods of modern electrochemistry due to its high spatial and temporal resolution. We introduced SECM into nanomachining by feeding the electrochemical modulations of the tip electrode back to the positioning system, and we demonstrated that SECM is a versatile nanomachining technique on semiconductor wafers using electrochemically induced chemical etching. The removal profile was correlated to the applied tip current when the tip was held stationary and when it was moving slowly (<20 µm s-1 ), and it followed Faraday's law. Both regular and irregular nanopatterns were translated into a spatially distributed current by the homemade digitally controlled SECM instrument. The desired nanopatterns were "sculpted" directly on a semiconductor wafer by SECM direct-writing mode. The machining accuracy was controlled to the sub-micrometer and even nanometer scales. This advance is expected to play an important role in electrochemical nanomachining for 3D micro/nanostructures in the semiconductor industry.

17.
Emerg Microbes Infect ; 9(1): 1567-1579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32602823

RESUMO

Diverse SARS-like coronaviruses (SL-CoVs) have been identified from bats and other animal species. Like SARS-CoV, some bat SL-CoVs, such as WIV1, also use angiotensin converting enzyme 2 (ACE2) from human and bat as entry receptor. However, whether these viruses can also use the ACE2 of other animal species as their receptor remains to be determined. We report herein that WIV1 has a broader tropism to ACE2 orthologs than SARS-CoV isolate Tor2. Among the 9 ACE2 orthologs examined, human ACE2 exhibited the highest efficiency to mediate the infection of WIV1 pseudotyped virus. Our findings thus imply that WIV1 has the potential to infect a wide range of wild animals and may directly jump to humans. We also showed that cell entry of WIV1 could be restricted by interferon-induced transmembrane proteins (IFITMs). However, WIV1 could exploit the airway protease TMPRSS2 to partially evade the IFITM3 restriction. Interestingly, we also found that amphotericin B could enhance the infectious entry of SARS-CoVs and SL-CoVs by evading IFITM3-mediated restriction. Collectively, our findings further underscore the risk of exposure to animal SL-CoVs and highlight the vulnerability of patients who take amphotericin B to infection by SL-CoVs, including the most recently emerging (SARS-CoV-2).


Assuntos
Betacoronavirus/fisiologia , Quirópteros/virologia , Proteínas de Membrana/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/classificação , Células HEK293 , Humanos , Ratos , Receptores de Coronavírus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Viverridae
18.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641482

RESUMO

C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry.IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.


Assuntos
Antígenos de Superfície/metabolismo , Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Interações Hospedeiro-Patógeno , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Internalização do Vírus , Sequência de Aminoácidos , Anfotericina B/farmacologia , Betacoronavirus/efeitos dos fármacos , COVID-19 , Linhagem Celular , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/epidemiologia , Suscetibilidade a Doenças , Evolução Molecular , Proteínas Ligadas por GPI/metabolismo , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Sinais Direcionadores de Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32661139

RESUMO

The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/veterinária , Receptores Virais/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/classificação , COVID-19 , Linhagem Celular , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/química , Filogenia , Ligação Proteica , Domínios Proteicos , Proteólise , Receptores Virais/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Tropismo Viral , Internalização do Vírus
20.
Liver Int ; 40(1): 83-91, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498528

RESUMO

BACKGROUND: Tenofovir disoproxil fumarate (TDF) imposes a high genetic barrier to drug resistance and potently inhibits replication of multidrug-resistant hepatitis B virus. Few clinical cases with confirmed TDF-resistance have been reported to date. METHODS AND RESULTS: Here, we report viral rebound in a patient with chronic hepatitis B who underwent TDF monotherapy and harboured a quadruple mutant consisting of classic entecavir (ETV)-resistance mutations (rtL180M/T184L/M204V) together with an rtA200V mutation in the reverse transcriptase gene. Sequencing analysis revealed that this quadruple mutant emerged as a major viral population. In vitro phenotyping demonstrated that the rtL180M/T184L/A200V/M204V mutant had moderate resistance to TDF treatment, with a 4.52-fold higher half maximal effective concentration than that of wild-type virus. Importantly, this patient with TDF resistance achieved virological suppression after TDF/ETV combination rescue therapy. CONCLUSION: An rtL180M/T184L/A200V/M204V mutant with moderate resistance to TDF monotherapy was selected during sequential nucleoside analogue (NA) treatment in a stepwise manner. ETV/TDF combination therapy effectively suppressed replication of this TDF-resistant mutant. Our studies provide novel insights into the treatment of NA-naïve patients as well as patients with TDF resistance.


Assuntos
Farmacorresistência Viral , Guanina/análogos & derivados , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , DNA Polimerase Dirigida por RNA/genética , Tenofovir/uso terapêutico , Antivirais/uso terapêutico , Quimioterapia Combinada , Feminino , Genótipo , Guanina/uso terapêutico , Humanos , Pessoa de Meia-Idade , Mutação , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA