Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
mSystems ; 9(3): e0121423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38364095

RESUMO

The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE: The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.


Assuntos
Microbiota , Muramidase , Animais , Camundongos , Muramidase/genética , NAD , Caenorhabditis elegans , Intestinos/microbiologia , Bactérias , Dieta Hiperlipídica/efeitos adversos
2.
Heliyon ; 10(1): e22888, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163215

RESUMO

Background: Rising rates of lung cancer screening have contributed to an increase in pulmonary nodule diagnosis rates. Studies have shown that psychosocial factors and hormones have an impact on the development of the oncological diseases. Therefore, we conducted this study to explore the potential relationship between pulmonary nodules pathology and patient personality traits and hormone levels. Methods: This study enrolled 245 individuals who had first been diagnosed with pulmonary nodules in Tangdu Hospital and admitted for surgery. The personality profile of these patients was analyzed on admission using the C-Type Behavioral Scale and hormone levels were measured in preoperative serum samples. Associations between nodule pathology, personality scores, and hormone levels, were then assessed through Statistical methods analysis. Results: Behavioral scale analyses revealed significant differences four items, including depression, anger outward, optimism, and social support (P< 0.05). Specifically, patients with higher depression scores were more likely to harbor malignant pulmonary nodules, as were patients with lower levels of anger outward, social support, and optimism. Univariate analyses indicated that nodule pathology was associated with significant differences in nodule imaging density, CT value, testosterone levels, and T4 levels(P< 0.05), and logistic regression analyses revealed pulmonary nodule imaging density and T4 levels to be significant differences of nodule pathology. Conclusion: The results showed a significant association between nodules pathology and the personality characteristics of the patients (depression, anger outward, optimism, social support), the patients' T4 levels and the imaging density of the nodules.

3.
Respir Res ; 25(1): 18, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178073

RESUMO

OBJECTIVE: We aim to molecularly stratify stage IA lung adenocarcinoma (LUAD) for precision medicine. METHODS: Twelve multi-institution datasets (837 cases of IA) were used to classify the high- and low-risk types (based on survival status within 5 years), and the biological differences were compared. Then, a gene-based classifying score (IA score) was trained, tested and validated by several machine learning methods. Furthermore, we estimated the significance of the IA score in the prognostic assessment, chemotherapy prediction and risk stratification of stage IA LUAD. We also developed an R package for the clinical application. The SEER database (15708 IA samples) and TCGA Pan-Cancer (1881 stage I samples) database were used to verify clinical significance. RESULTS: Compared with the low-risk group, the high-risk group of stage IA LUAD has obvious enrichment of the malignant pathway and more driver mutations and copy number variations. The effect of the IA score on the classification of high- and low-risk stage IA LUAD was much better than that of classical clinicopathological factors (training set: AUC = 0.9, validation set: AUC = 0.7). The IA score can significantly predict the prognosis of stage IA LUAD and has a prognostic effect for stage I pancancer. The IA score can effectively predict chemotherapy sensitivity and occult metastasis or invasion in stage IA LUAD. The R package IAExpSuv has a good risk probability prediction effect for both groups and single stages of IA LUAD. CONCLUSIONS: The IA score can effectively stratify the risk of stage IA LUAD, offering good assistance in precision medicine.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Variações do Número de Cópias de DNA , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Bases de Dados Factuais , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Medição de Risco , Prognóstico
4.
Int J Surg ; 110(3): 1605-1610, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116668

RESUMO

BACKGROUND: No studies to date have focused on the timing of pulmonary resection in patients with previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, the authors analyzed the surgical outcomes and evaluated the optimal time point of pulmonary resection surgery following SARS-CoV-2 infection. MATERIALS AND METHODS: In this multicenter retrospective cohort study, patients were divided into different groups according to the time interval between SARS-CoV-2 diagnosis and pulmonary resection. The primary outcome measure was postoperative complications within 30 days after surgery, which was investigated to determine the optimal time point of pulmonary resection. Logistic regression models were used to calculate the risk factors for postoperative complications. RESULTS: In total, 400 patients were enrolled, and the postoperative pathologic examination of 322 (80.5%) patients showed lung cancer. As the interval between SARS-CoV-2 infection and pulmonary resection increased, the incidence of complications gradually decreased in each group. The incidence of grade ≥II complications was higher in the ≤2-week and 2-week to 4-week groups than in the 4-week to 6-week, 6-week to 8-week and >8-week groups [3 (21.4%), 17 (20.2%), 10 (10.6%), 13 (7.9%), and 3 (6.5%), respectively] ( P <0.05). Multiclassification regression analysis showed that the risk of grade ≥II complications in the ≤2-week and 2-week to 4-week groups was significantly higher than that in the >8-week group [odds ratio (95% CI), 3.937 (1.072-14.459), P =0.039 and 3.069 (1.232-6.863), P =0.015]. The logistic regression analysis suggested that underlying disease, persistent SARS-CoV-2 symptoms, and surgical timing (≤4 weeks) were independent risk factors for complications of pulmonary resection after SARS-CoV-2 infection. CONCLUSION: Pulmonary resection should be delayed for at least 4 weeks following SARS-CoV-2 infection to reduce the risk of postoperative complications.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Teste para COVID-19 , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
5.
Heliyon ; 9(10): e21059, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916122

RESUMO

Background: Enhancing the diagnostic efficacy of early-stage lung cancer is crucial for improving prognosis. The objective of this study was to ascertain dependable exosomal miRNAs as biomarkers for the diagnosis of lung cancer. Methods: Exosomal miRNA candidates were identified through miRNA sequencing and subsequently validated in various case-control sets using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The correlation between the expression of exosomal miRNAs and the clinicopathological features of lung cancer was investigated. To assess the diagnostic efficacy of exosomal miRNAs for lung cancer, the receiver operating characteristic (ROC) curve analysis was conducted. The optimal cutoff value of exosomal miRNAs was determined in the testing cohort and subsequently confirmed in the validation cohort. Results: The results showed that the expression of exosomal miR-1290 was significantly elevated, while that of miR-29c-3p was significantly decreased in the plasma of lung cancer patients, especially in those with early-stage lung cancer, compared to individuals with benign lung conditions (P < 0.01). Exosomal miR-1290 and miR-29c-3p demonstrated superior diagnostic efficacy compared to conventional tumor biomarkers in distinguishing between lung cancer and benign lung diseases, as evidenced by their respective area under the curve (AUC) values of 0.934 and 0.868. Furthermore, exosomal miR-1290 and miR-29c-3p exhibited higher diagnostic efficiency in early-stage lung cancer than traditional tumor markers, with AUC values of 0.947 and 0.895, respectively. Notably, both exosomal miR-1290 and miR-29c-3p displayed substantial discriminatory capacity in distinguishing between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as indicated by their respective AUC values of 0.810 and 0.842. Conclusions: The findings of this study provided evidence that exosomal miR-1290 and miR-29c-3p hold significant potential as biomarkers for the early detection of lung cancer, as well as for differentiating between NSCLC and SCLC.

6.
Cells ; 12(19)2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37830635

RESUMO

Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.


Assuntos
COVID-19 , MicroRNAs , Mycoplasma gallisepticum , Doença Pulmonar Obstrutiva Crônica , Síndrome do Desconforto Respiratório , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Síndrome do Desconforto Respiratório/genética , Biomarcadores/metabolismo
7.
Cancer Gene Ther ; 30(11): 1443-1455, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537209

RESUMO

Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos , Animais , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/terapia , Adenocarcinoma/patologia , Modelos Animais de Doenças , Microambiente Tumoral
8.
Foods ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174316

RESUMO

As toxic metals, Hg and Cd are a concern for food safety and human health; their rapid and portable analysis is still a challenge. A portable and rapid Hg-Cd analyzer constructed from a metal-ceramic heater (MCH)-based electrothermal vaporizer (ETV), an on-line catalytic pyrolysis furnace (CPF), a composite Pt/Ni trap, and a homemade miniature atomic absorption spectrometer (AAS) was proposed for grain analysis in this work. To enhance sensitivity, a new folded light path was designed for simultaneous Hg and Cd analysis using charge coupled device (CCD) in AAS. To eliminate the grain matrix interference, a catalytic pyrolysis furnace with aluminum oxide fillers was utilized to couple with a composite Pt/Ni trap. The method limits of detection (LODs) were 1.1 µg/kg and 0.3 µg/kg for Hg and Cd using a 20 mg grain sample, fulfilling the real sample analysis to monitor the grain contamination quickly; linearity R2 > 0.995 was reached only using standard solution calibration, indicating the sample was free of grain matrix interference. The favorable analytical accuracy and precision were validated by analyzing real and certified reference material (CRM) grains with recoveries of 97-103% and 96-111% for Hg and Cd, respectively. The total analysis time was less than 5 min without sample digestion or use of any chemicals, and the instrumental size and power consumption were <14 kg and 270 W, respectively. Compared with other rapid methods, this newly designed Hg-Cd analyzer is proven to be simple, portable, and robust and is, thus, suitable to quickly monitor Hg and Cd contamination in the field to protect grain and food safety.

9.
Brain Behav ; 13(5): e2970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999243

RESUMO

BACKGROUND: Conditioned place preference (CPP) is a common behavioral paradigm for studying the association of unconditioned stimulus reward memory with context. Generalization is a flexible memory recall pattern developed on the basis of original memory. Drug-seeking behaviors in substance use disorders (SUDs) exhibit diversity, which we generally attribute to the highly generalized features of SUD memory. However, to date, there are no animal models for SUD generalization studies. METHODS: We design the generalization box (G-box) and the generalization retrieval process based on the conditioned place preference (CPP) model. In the memory retrieval stage, we replaced the conditioning CPP box (T-box) with a generalization box (G-box) to study drug generalization memory. For appearance, the generalized boxes have different angles and numbers of sides compared to the conditioning boxes. For the visual cues, the shapes of the symbols are different (triangle icons for the hexagonal chamber and dot icons for the round chamber), but the orientation information remains the same. To establish CPP generalization, the mice received morphine on the vertical or horizontal side of a conditioning box (T-box) and saline on the other side. Then, after CPP conditioning, the generalization test was performed in a generalization box (G-box: hexagonal chamber and Gr-box: round chamber) 21 days later. RESULTS: CPP-conditioned mice still displayed a clear preference for similar visual information in the G-box. CPA-conditioned mice behaved similarly to CPP, with mice consistently avoiding similar visual information in the G-box. We further observed that the generalization results are similar using two generalization boxes (G-box and Gr-box). CONCLUSION: In this study, we succeeded in creating a simple and effective generalization model for morphine reward. The establishment of this model provides a new tool for generalization studies of SUD and therapy in humans.


Assuntos
Condicionamento Clássico , Morfina , Humanos , Camundongos , Animais , Morfina/farmacologia , Condicionamento Operante , Memória , Recompensa
10.
Anal Chim Acta ; 1251: 341008, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925294

RESUMO

At present, immediate monitoring urinary arsenic is still a challenge for treating arsenic poisoning patients. Thus, a fast, reliable and accurate analytical approach is indispensable to monitor ultratrace arsenic in urine sample for health warning. In this work, a silicon nitride (SN) rod was first integrally utilized as a sample carrier for ≤50 µL urinary aliquot, an electric heater for removing water and ashing sample as well as a high voltage electrode for dielectric barrier discharge vaporization (DBDV). The direct analytical method of arsenic in urine without sample digestion was thus developed using atomic fluorescence spectrometer (AFS) as a model detector. After 4 V electrically heating the SN rod for 60 s, urine sample was dehydrated and ashed outside; then, DBD was exerted under 0.8 A with 0.8 L/min H2 + Ar (1:9, v:v) for 20 s to vaporize arsenic analyte from the SN rod. After optimization, 0.014 µg/L arsenic detection limit (LOD) was reached with favorable analytical precision (RSD <5%) and accuracy (91-110% recoveries) for real sample analysis. As a result, the whole analysis process only consumes <3 min to exclude complicated sample preparation; furthermore, the designed DBDV system only occupies 25 W and <2 kg, which renders a miniature sampling component to hyphenate with a miniature detector to detect arsenic. Thus, this direct sampling DBDV method extremely fulfills the fast, sensitive and precise detection of ultratrace arsenic in urine sample.


Assuntos
Arsênio , Humanos , Arsênio/análise , Volatilização , Espectrofotometria Atômica/métodos , Água/análise
11.
Cancer Med ; 12(5): 5545-5557, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36325966

RESUMO

OBJECTIVE: Mutations in driver genes contribute to the development and progression of lung adenocarcinoma (LUAD). However, in the dynamic evolutionary process from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and eventually to invasive adenocarcinoma (IAC), the role of driver genes is currently unclear. This study aimed to analyse the role of driver gene status in the progression of LUAD from preneoplasia to IAC. METHODS: Patients with LUAD who underwent surgery in our centre from March 2015 to December 2019 were retrospectively analysed, and LUAD patients with tumour sizes ≤3.0 cm and pN0 were included in the final analysis. The mutation status of common driver genes, including EGFR, ALK and ROS1, was detected. According to the pathological characteristics, the patients were divided into three stages: AIS, MIA and IAC. We analysed the distribution of driver gene mutation frequencies across three stages of LUAD. In addition, we performed univariate and multivariate analyses of IAC patients to screen for relevant variables (driver genes and clinicopathological features) affecting their prognosis. RESULTS: Ultimately, 759 patients with LUAD were enrolled, including 135, 130, and 494 cases of AIS, MIA, and IAC, respectively. EGFR mutations were identified in 359 (61.8%) patients, and with the transition from AIS to MIA, the frequency of EGFR mutations increased from 33.3% to 50.8%, p = 0.004, whereas the frequency of EGFR mutations was comparable for MIA and IAC (50.8% vs. 50.2%, p = 0.922). Moreover, ALK and ROS1 gene fusions were identified in 17 cases (2.2%) and 2 cases (3.0‰) respectively. For AIS, neither ALK gene nor ROS1 gene fusions were observed. When the tumour progressed to MIA, the ALK fusion frequency was 2.3% (3/130), which was basically consistent with the ALK fusion frequency of 2.8% in IAC, p = 0.143. For IAC, fusions of ROS1 fell into this category. In addition, we found that 40 patients (5.3%) developed metastasis/recurrence, and 14 patients (1.8%) died of cancer-specific related diseases. Notably, for AIS, there were no recurrences and no deaths, and for MIA, only 1 patient died with LUAD. Finally, survival analysis was performed in patients with stage IA invasive adenocarcinoma, and EGFR-mutant patients showed better DFS than EGFR-wild-type patients (p = 0.036). Conversely, patients with ALK fusions showed worse DFS than those with ALK wild-type (p = 0.004), and the same results were found in OS analysis. CONCLUSIONS: The accumulation of EGFR driver gene mutation frequencies mediates the progression of LUAD from AIS to MIA. When the tumour progresses to stage IA invasive adenocarcinoma, multivariate analysis based on driver gene status can be used as a pivotal prognostic factor.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Estudos Retrospectivos , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/patologia , Receptores Proteína Tirosina Quinases/genética , Receptores ErbB/genética , Mutação
12.
J Therm Biol ; 110: 103386, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462848

RESUMO

Mongolian sheep are characteristically cold-tolerant and they partially depend on seasonal browning of white adipose tissue (WAT) to acclimate to cold environments. The present work aimed to examine the rumen microbes, rumen fermentation profile, and relationships between the rumen microbiota, short-chain fatty acids (SCFAs), and markers of WAT browning and are thus conducive to exploring the plateau environment adaptability of Mongolian sheep in the cold season. A comparative analysis of the rumen microbes and SCFAs in the cold and warm seasons was conducted. Rumen microbes were analyzed using Illumina sequencing of the 16S rRNA gene. Ruminal SCFAs were determined by gas chromatography. Spearman's correlation test was used to determine the relationships between the rumen microbiota, SCFAs, and markers of WAT browning. Microbial 16S rRNA sequencing revealed a marked shift in rumen microbiota composition between the two seasons, and the bacteria were characterized by increased levels of the Actinobacteria and genera Christensenellaceae R-7 group, Ruminococcaceae UCG-011, Rikenellaceae RC9 gut group, Papillibacter, and Butyrivibrio 2 and reduced levels of Prevotella 1 and Ruminococcaceae UCG-014 in the cold season (P<0.05). Furthermore, the concentrations of SCFAs such as acetate and butyrate were significantly increased in the cold season (P<0.001 and P<0.05, respectively). Correlation analysis demonstrated that the relative abundances of the Actinobacteria and the genera Christensenellaceae R-7 group, Butyrivibrio 2, Ruminococcaceae UCG-002, and Ruminococcaceae UCG-011, identified as members of the Christensenellaceae, Lachnospiraceae, and Ruminococcaceae families (all within Firmicutes), were positively correlated with markers of browning in either retroperitoneal WAT or perirenal WAT, and acetate was positively correlated with Ruminococcaceae UCG-011 and Butyrivibrio 2 and markers of browning in either retroperitoneal WAT or perirenal WAT. Overall, there are distinct relationships between the rumen microbiota, ruminal SCFAs and markers of WAT browning during the cold season in grazing Mongolian sheep.


Assuntos
Actinobacteria , Rúmen , Ovinos , Animais , Estações do Ano , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Gerbillinae , Tecido Adiposo Branco , Biomarcadores
13.
Brain Sci ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36552110

RESUMO

An obvious reason for substance uses disorders (SUDs) is drug craving and seeking behavior induced by conditioned context, which is an abnormal solid context memory. The relationship between susceptibility to SUD and learning ability remains unclear in humans and animal models. In this study, we found that susceptibility to morphine use disorder (MUD) was negatively correlated with learning ability in conditioned place preference (CPP) in C57 mice. By using behavioral tests, we identified the FVB mouse as learning impaired. In addition, we discovered that learning-relevant proteins, such as the glutamate receptor subunits GluA1, NR1, and NR2A, were decreased in FVB mice. Finally, we assessed the context learning ability of FVB mice using the CPP test and priming. We found that FVB mice had lower learning performance with respect to normal memory but higher performance of morphine-reinstatement memory. Compared to C57 mice, FVB mice are highly sensitive to MUDs. Our results suggest that SUD susceptibility is predicted by impaired learning ability in mice; therefore, learning ability can play a simple and practical role in identifying high-risk SUD groups.

14.
Front Immunol ; 13: 1014053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268014

RESUMO

Rational: Lung cancer is the most common tumor worldwide, with the highest mortality rate and second highest incidence. Immunotherapy is one of the most important treatments for lung adenocarcinoma (LUAD); however, it has relatively low response rate and high incidence of adverse events. Herein, we explored the therapeutic potential of fibrinogen-like protein 1 (FGL1) for LUAD. Methods: Data from GEPIA and ACLBI databases were assessed to explore gene-gene correlations and tumor immune infiltration patterns. A total of 200 patients with LUAD were recruited. FGL1 levels in the serum and cellular supernatant were determined by enzyme-linked immunosorbent assay. In vitro and in vivo experiments were performed to assess the effect FGL1 on the proliferation of LUAD cells. Cocultures were performed to explore the effect of FGL1 knockdown in lung cancer cells on T cells, concerning cytokine secretion and viability. PROMO and hTFtarget databases were used for transcription factor prediction. Quantitative polymerase chain reaction (qPCR), chromatin immunoprecipitation, and dual luciferase reporter assays were performed to validate the identified transcription factor of FGL1. Immunoprecipitation, mass spectrometry and gene ontology analysis were performed to explore the downstream partners of FGL1. Results: FGL1 expression in LUAD was positively associated with PDL1, but not for PD1 expression. Moreover, FGL1 was positively associated with the CD3D expression and negatively associated with FOXP3, S100A9, and TPSB2 within the tumor site. FGL1 promotes the secretion of interleukin-2 by T cells in vitro, simultaneously inducing their apoptosis. Indeed, YY1 is the upstream molecule of FGL1 was found to be transcriptionally regulated by YY1 and to directly by to MYH9 to promote the proliferation of LUAD cells in vitro and in vivo. Conclusions: FGL1 is involved in the immunological and proliferative regulation of LUAD cells by controlling the secretion of important immune-related cytokines via the YY1-FGL1-MYH9 axis. Hence, targeting FGL1 in LUAD may pave the way for the development of new immunotherapies for tackling this malignancy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Interleucina-2/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Fibrinogênio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
15.
Curr Alzheimer Res ; 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36278470

RESUMO

AIMS: Exploring the neurobiological mechanisms of early AD damage Background: The early diagnosis of Alzheimer's disease (AD) has a very important impact on the prognosis of AD. However, the early symptoms of AD are not obvious and difficult to diagnose. Existing studies have rarely explored the mechanism of early AD. AMPARs are early important learning memory-related receptors. However, it is not clear how the expression levels of AMPARs change in early AD. OBJECTIVE: We explored learning memory abilities and AMPAR expression changes in APP/PS1 mice at 4 months, 8 months, and 12 months. METHOD: We used the classic Morris water maze to explore the learning and memory impairment of APP/PS1 mice and used western blotting to explore the changes in AMPARs in APP/PS1 mice. RESULT: We found that memory impairment occurred in APP/PS1 mice as early as 4 months of age, and the impairment of learning and memory gradually became serious with age. The changes in GluA1 and p-GluA1 were most pronounced in the early stages of AD in APP/PS1 mice. CONCLUSION: Our study found that memory impairment in APP/PS1 mice could be detected as early as 4 months of age, and this early injury may be related to GluA1.

16.
J Therm Biol ; 109: 103333, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195394

RESUMO

Mongolian sheep are characteristically cold-tolerant and thus can survive well and maintain genetic stability in the extremely cold environment of the Mongolian Plateau. However, the adaptive mechanism of Mongolian sheep during the cold season in the plateau environment remains unknown. Browning of white adipose tissues (WAT) can trigger nonshivering thermogenesis as a potential strategy to promote an animal's tolerance to cold environments. Thus, a comparative analysis of the genes and proteins of uncoupling protein 1 (UCP1)-dependent and UCP1-independent browning pathways, mitochondrial biogenesis, lipogenic and lipolytic processes of WAT from grazing Mongolian sheep in the cold and warm seasons was conducted. We found seasonal browning of both retroperitoneal WAT and perirenal WAT, and the signalling of the process was mainly transduced by the UCP1- dependent pathway, primarily reflected in the upregulated gene levels of UCP1 and peroxisome proliferative activated receptor gamma coactivator 1 alpha (PGC-1α). In addition, the mean adipocyte diameter and mRNA expression of lipogenic genes in both interscapular WAT and subcutaneous WAT were significantly elevated during the cold season. The findings of this study demonstrate that grazing Mongolian sheep could depend on seasonal browning of both retroperitoneal WAT and perirenal WAT together with the expansion of both interscapular WAT and subcutaneous WAT to acclimate to cold environments of the Mongolian Plateau.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Aclimatação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , RNA Mensageiro/genética , Estações do Ano , Ovinos , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Front Microbiol ; 13: 978057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187944

RESUMO

The objective of this study was to evaluate the effect of Allium mongolicum Regel ethanol extract (AME) on the concentration of three branched-chain fatty acids (BCFAs) related to flavor, fermentation parameters and the bacteria and their correlations in the rumen of lambs. A total of thirty 3-month-old male, Small-tailed Han sheep (33.60 ± 1.23 kg) were randomly distributed into 2 groups as follows: control group (CON) was fed a basal diet and AME group was fed a basal diet supplemented with 2.8 g⋅lamb-1⋅d-1 A. mongolicum Regel ethanol extract. AME supplementation decreased (P = 0.022) 4-methyloctanoic acid (MOA) content and tended to lower (P = 0.055) 4-methylnonanoic acid (MNA) content in the rumen. Compared to CON group, the ruminal concentrations of valerate and isovalerate were higher (P = 0.046 and P = 0.024, respectively), and propionate was lower (P = 0.020) in the AME group. At the phylum level, the AME group had a lower abundance of Bacteroidetes (P = 0.014) and a higher abundance of Firmicutes (P = 0.020) than the CON group. At the genus level, the relative abundances of Prevotella (P = 0.001), Christensenellaceae_R-7_group (P = 0.003), Succiniclasticum (P = 0.004), and Selenomonas (P = 0.001) were significantly lower in the AME group than in the CON group, while the relative abundances of Ruminococcus (P < 0.001), Quinella (P = 0.013), and Lachnospiraceae_XPB1014_group (P = 0.001) were significantly higher. The relative abundances of Prevotella (P = 0.029, R = 0.685; P = 0.009, R = 0.770), Christensenellaceae_R-7_group (P = 0.019, R = 0.721; P = 0.029, R = 0.685), and Succiniclasticum (P = 0.002, R = 0.842; P = 0.001, R = 0.879) was positively correlated with MOA and MNA levels, and the relative abundance of Lachnospiraceae_XPB1014_group (P = 0.033, R = -0.673) was negatively correlated with MOA. The relative abundance of Christensenellaceae_R-7_group (P = 0.014, R = -0.744) and Prevotellaceae_UCG-003 (P = 0.023, R = -0.706) correlated negatively with the EOA content. In conclusion, these findings suggest that the AME affected the concentration of BCFAs, fermentation parameters and the rumen bacteria in the rumen of lambs.

18.
ACS Appl Mater Interfaces ; 14(36): 41588-41597, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048715

RESUMO

Due to the uncertainty of the brazing solder composition and its unknown effect on the long-term stability of the interface, the brazing interface connection process for half-Heusler (hH) thermoelectric (TE) devices is still partially concealed and incomplete. In this work, we selected different types of Ag-Cu-based brazing solders with different Ag and Cu contents to assemble hH TE devices, observed the microstructure of the interface contact, and analyzed its formation mechanism. It is found that when the Cu element in the brazing solder is high, it tends to form an intermetallic compound (IMC) layer at the interface, which threatens the life of the device. On the contrary, when the content of the Ag element is high, the formation of the IMC layer will be avoided. Then, the long-term stability of the interface brazed by Ag72Cu28 with high Ag content was verified: the interface connection showed good contact resistivity stability and mechanical reliability; the fabricated uni-couple TE module achieved a maximum output power of 0.28 W and a maximum conversion efficiency of 7.34% at a temperature difference of 538 K. This work summarizes the selection principle of Cu-Ag-based brazing solder when assembling hH TE modules and verifies the long-term stability of the brazed connection interface. The experiment results can provide a reference for the actual fabrication of hH TE devices.

19.
Animals (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139192

RESUMO

Mongolian sheep are characteristically cold-tolerant. However, their cold adaptive processes, such as the physiological feedback adjustments that occur during the cold season, remain unexplored. Therefore, the present study aimed to evaluate the physiological adaptations of Mongolian sheep in cold plateau environments. A comparative analysis of the serum biochemical parameters, immune response, antioxidant capacity, and glucose and lipid metabolism of grazing Mongolian sheep in the cold and warm seasons was conducted. The results showed that in the cold season, the glucose and lipid metabolism and thermogenesis of the grazing Mongolian sheep were notably enhanced. Moreover, the immune responses were stimulated by increased levels of cytokines, such as IL-2, IL-1ß, and IL-6, during the cold season. However, the antioxidant defense system was damaged; this damage was mainly characterized by decreased activity of antioxidant enzymes and an increased level of MDA during the cold season. Overall, glucose metabolism, lipid metabolism, thermogenesis, and immune responses were stimulated to meet the requirements of organismal metabolic regulation to enable grazing Mongolian sheep to physiologically adapt to cold climatic conditions.

20.
Int Immunopharmacol ; 111: 109090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917737

RESUMO

Mycoplasma gallisepticum (MG) is the main pathogen of chronic respiratory disease (CRD), an infectious disease in chickens with high morbidity. Exosomal miRNAs are emerging as important regulators in host immune response to microbial invasion. Previously, we found that gga-miR-193a was significantly up-regulated in exosomes from MG-infected primary chicken type II pneumocytes (CP-IIs). Therefore, the purpose of this study was to investigate the role of exosomal gga-miR-193a in MG infection. Exosomes were isolated and identified via ultracentrifugation, transmission electron microscopy, and nanoparticle-tracking analysis. Real-time quantitative PCR and Western blot were used to detect the gene expression. Enzyme-linked immunosorbent assay was used to examine the levels of the inflammatory cytokines. CCK-8 and flow cytometry assays were applied to analyze the cell functions. The results showed that MG infection induced high expression of gga-miR-193a in exosomes from CP-IIs. Moreover, exosomes secreted by MG-infected CP-IIs could selectively transport gga-miR-193a into DF-1 cells. Exosomal gga-miR-193a internalized by DF-1 cells inhibited cell proliferation, promoted apoptosis, and increased interleukin-1ß and tumor necrosis factor-α secretions by targeting the RAS/ERK signaling pathway. These results suggest that MG induced the secretion of gga-miR-193a by exosomes to damage the life activities of normal cells, which partially interpreted the mechanism of MG establishing systemic chronic infection in the body.


Assuntos
MicroRNAs , Infecções por Mycoplasma , Mycoplasma gallisepticum , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Galinhas , Citocinas/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/metabolismo , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA