Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.021
Filtrar
1.
RSC Chem Biol ; 5(5): 447-453, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725907

RESUMO

Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.

2.
Cancer Lett ; 592: 216934, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.

3.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38730220

RESUMO

Triclosan is a widely used antibacterial agent and disinfectant, and its overuse endangered ecological safety and human health. Therefore, reducing residual TCS concentrations in the environment is an urgent issue. Bacillus sp. DL4, an aerobic bacterium with TCS biodegradability, was isolated from pharmaceutical wastewater samples. Response surface methodology (RSM) and artificial neural network (ANN) were carried out to optimize and verify the different condition variables, and the optimal growth conditions of strain DL4 were obtained (35 °C, initial pH 7.31, and 5% v/v). After 48 h of cultivation under the optimal conditions, the removal efficiency of strain DL4 on TCS was 95.89 ± 0.68%, which was consistent with the predicted values from RSM and ANN models. In addition, higher R2 value and lower MSE and ADD values indicated that the ANN model had a stronger predictive capability than the RSM model. Whole genome sequencing results showed that many functional genes were annotated in metabolic pathways related to TCS degradation (e.g., amino acid metabolism, xenobiotics biodegradation and metabolism, carbohydrate metabolism). Main intermediate metabolites were identified during the biodegradation process by liquid chromatography-mass spectrometry (LC-MS), and a possible pathway was hypothesized based on the metabolites. Overall, this study provides a theoretical foundation for the characterization and mechanism of TCS biodegradation in the environment by Bacillus sp. DL4.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38748345

RESUMO

INTRODUCTION: Atopic dermatitis (AD) is a chronic immuno-inflammatory skin disease. Crisaborole ointment, 2%, is a nonsteroidal phosphodiesterase 4 inhibitor approved for the treatment of mild to moderate AD. This post hoc analysis assesses the efficacy and safety of crisaborole in Chinese patients aged ≥ 2 years with mild to moderate AD. METHODS: We evaluated the efficacy and safety of crisaborole in Chinese patients from the vehicle-controlled, phase 3 CrisADe CLEAR study. Patients were randomly assigned 2:1 to receive crisaborole or vehicle twice daily, respectively, for 28 days. The primary endpoint was percent change from baseline in Eczema Area and Severity Index (EASI) total score at day 29. Key secondary endpoints were improvement in Investigator's Static Global Assessment (ISGA), ISGA success, and change from baseline in weekly average Peak Pruritus Numerical Rating Scale (PP-NRS) score. Adverse events were documented. RESULTS: Of 391 patients in the overall study, 237 were from China, 157 assigned to crisaborole and 80 assigned to vehicle. A greater reduction in percent change from baseline in EASI total score at day 29 was shown in the crisaborole vs. vehicle group (least squares mean [LSM]: -66.34 [95% (confidence interval) CI -71.55 to -61.12] vs. -50.18 [95% CI -58.02 to -42.34]). Response rates for achievement of ISGA improvement (43.2% [95% CI 35.4-51.1] vs. 33.4% [95% CI 22.5-44.2]) and ISGA success (31.7% [95% CI 24.3-39.0] vs. 21.5% [95% CI 12.1-30.9]) at day 29 were higher in the crisaborole vs. vehicle group. A greater reduction in change from baseline in weekly average PP-NRS score at week 4 was observed in the crisaborole vs. vehicle group (LSM: -1.98 [95% CI -2.34 to -1.62] vs. -1.08 [95% CI -1.63 to -0.53]). No new safety signals were observed. CONCLUSION: Crisaborole was effective and well tolerated in Chinese patients aged ≥ 2 years with mild to moderate AD. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04360187.

6.
Bioorg Chem ; 148: 107434, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38744168

RESUMO

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.

7.
Phys Chem Chem Phys ; 26(19): 14186-14193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713092

RESUMO

Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.

8.
Burns Trauma ; 12: tkae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716051

RESUMO

Septic shock is a severe form of sepsis characterized by high global mortality rates and significant heritability. Clinicians have long been perplexed by the differential expression of genes, which poses challenges for early diagnosis and prompt treatment of septic shock. Genetic polymorphisms play crucial roles in determining susceptibility to, mortality from, and the prognosis of septic shock. Research indicates that pathogenic genes are known to cause septic shock through specific alleles, and protective genes have been shown to confer beneficial effects on affected individuals. Despite the existence of many biomarkers linked to septic shock, their clinical use remains limited. Therefore, further investigation is needed to identify specific biomarkers that can facilitate early prevention, diagnosis and risk stratification. Septic shock is closely associated with multiple signaling pathways, including the toll-like receptor 2/toll-like receptor 4, tumor necrosis factor-α, phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor κB, Janus kinase/signal transducer and activator of transcription, mammalian target of rapamycin, NOD-like receptor thermal protein domain-associated protein 3 and hypoxia-induced-factor-1 pathways. Understanding the regulation of these signaling pathways may lead to the identification of therapeutic targets for the development of novel drugs to treat sepsis or septic shock. In conclusion, identifying differential gene expression during the development of septic shock allows physicians to stratify patients according to risk at an early stage. Furthermore, auxiliary examinations can assist physicians in identifying therapeutic targets within relevant signaling pathways, facilitating early diagnosis and treatment, reducing mortality and improving the prognosis of septic shock patients. Although there has been significant progress in studying the genetic polymorphisms, specific biomarkers and signaling pathways involved in septic shock, the journey toward their clinical application and widespread implementation still lies ahead.

9.
J Org Chem ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709904

RESUMO

EMM (electromagnetic mill)-promoted Pd-catalyzed solid state intramolecular Heck-type cyclization/boronation and Suzuki couplings are reported. Compared to previous mechanochemistry that constructed one chemical bond through a cross-coupling reaction, this strategy realizes cascade transformation along with multiple chemical bond formation. This conversion does not require organic solvents or additional heating, and it shows a good substrate scope and high functional group tolerance.

10.
Front Pharmacol ; 15: 1390294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720773

RESUMO

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

11.
Front Pharmacol ; 15: 1406127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720779

RESUMO

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

12.
Nat Commun ; 15(1): 3731, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702306

RESUMO

Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.


Assuntos
Citocromos c , Complexo IV da Cadeia de Transporte de Elétrons , Nanopartículas , Polímeros , Nanopartículas/química , Citocromos c/metabolismo , Citocromos c/química , Humanos , Polímeros/química , Polímeros/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Impressão Molecular/métodos , Ligação Proteica , Apoptose , Micelas , Células HeLa , Animais
13.
BMC Public Health ; 24(1): 1224, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702746

RESUMO

BACKGROUND: Accumulating evidence suggests a pivotal role of vitamin B2 in the pathogenesis and progression of prostate cancer (PCa). Vitamin B2 intake has been postulated to modulate the screening rate for PCa by altering the concentration of prostate-specific antigen(PSA). However, the relationship between vitamin B2 and PSA remains indeterminate. Hence, we conducted a comprehensive evaluation of the association between vitamin B2 intake and PSA levels, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: From a pool of 20,371 participants in the NHANES survey conducted between 2003 and 2010, a cohort of 2,323 participants was selected for the present study. The male participants were classified into four distinct groups based on their levels of vitamin B2 intake. We employed a multiple linear regression model and a non-parametric regression method to investigate the relationship between vitamin B2 and PSA levels. RESULTS: The study cohort comprised of 2,323 participants with a mean age of 54.95 years (± 11.73). Our findings revealed a statistically significant inverse correlation between vitamin B2 intake (mg) and PSA levels, with a reduction of 0.13 ng/ml PSA concentration for every unit increase in vitamin B2 intake. Furthermore, we employed a fully adjusted model to construct a smooth curve to explore the possible linear relationship between vitamin B2 intake and PSA concentration. CONCLUSIONS: Our study in American men has unveiled a notable inverse association between vitamin B2 intake and PSA levels, potentially posing a challenge for the identification of asymptomatic prostate cancer. Specifically, our findings suggest that individuals with higher vitamin B2 intake may be at a greater risk of being diagnosed with advanced prostate cancer in the future, possibly indicating a detection bias. These results may offer a novel explanation for the observed positive correlation between vitamin B2 intake and prostate cancer.


Assuntos
Inquéritos Nutricionais , Antígeno Prostático Específico , Neoplasias da Próstata , Riboflavina , Humanos , Masculino , Antígeno Prostático Específico/sangue , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Idoso , Neoplasias da Próstata/sangue , Neoplasias da Próstata/epidemiologia , Riboflavina/administração & dosagem , Adulto
14.
Food Chem ; 452: 139579, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38735111

RESUMO

Novel metal-organic framework MIL-101(Cr)-NH2 functionalised hydrophilic polydopamine-modified Fe3O4 magnetic nanoparticles (Fe3O4@PDA@MIL-101(Cr)-NH2) were synthesised and used as magnetic solid-phase extraction (MSPE) adsorbents for extracting tetracyclines (TCs) from milk samples. The integrated Fe3O4@PDA@MIL-101(Cr)-NH2 exhibited convenient magnetic separation and exceptional multi-target binding capabilities. Furthermore, the PDA coating significantly enhanced the hydrophilicity and extraction efficiency of the material, thereby facilitating the extraction of trace TCs. Various factors affecting MSPE, such as adsorbent dosage, extraction time, pH value, and desorption conditions, were optimised. The developed MSPE method coupled with high-performance liquid chromatography demonstrated good linearity (R2 ≥ 0.9989), acceptable accuracy (82.2%-106.1%), good repeatability (intra-day precision of 0.8%-4.7% and inter-day precision of 1.1%-4.5%), low limits of detection (2.18-6.25 µg L-1), and low limits of quantification (6.54-18.75 µg L-1) in TCs detection. The approach was successfully used for the quantification of trace TCs in real milk samples.

15.
J Hazard Mater ; 472: 134527, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735184

RESUMO

Toxic metal(loid)s released into the soil by non-ferrous metal mining and smelting activities pose a serious threat to residents and the surrounding ecosystem. Considering only total metal(loid) concentrations likely overestimates routine (eco)toxicological risk assessment of soil. We hypothesize that considering metal(loid) bioavailability/accessibility will improve the accuracy of risk assessment. To test this hypothesis, four mining areas in Southwest China, including mining and surrounding sites, were studied. Bioavailability was determined considering metal(loid)s leached by a simulated strong acid rain (SSAR) treatment. In the four areas, the mining site showed higher cumulative releases of metal(loid)s under SSAR treatment than the agricultural field located in the surrounding sites. Thus, the bioavailable metal(loid)s contents were continuously being released during SSAR treatment and likely increased the environmental risk. Ecological and health risk assessment of soil, calculated using total metal(loid)s content, was corrected considering bioavailable/accessible metal(loid)s, which was determined by the heavy metal(loid)s forms and in vitro simulated intestinal stages. Although the corrected indices indicated that the risk of metal(loid)s-contaminated soil was reduced, unfavorable ecological and health risks remained in the four areas. Our study provides new perspectives to better predict the risk of bioavailable/accessible metal(loid)s in non-ferrous metal contaminated and surrounding soils.

16.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731506

RESUMO

The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them (assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase products (char, tar, and gas) during protein pyrolysis. The research results revealed several key findings. Regardless of whether the model compounds are actual proteins or assembled amino acids, NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3 generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This discrepancy mainly stems from the inherent structural differences between proteins and amino acids. In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release NH3 through a simpler deamination process, leading to a significant increase in NH3 production during their pyrolysis.


Assuntos
Amônia , Simulação de Dinâmica Molecular , Proteínas , Pirólise , Amônia/química , Proteínas/química , Aminoácidos/química , Nitrogênio/química
17.
Otol Neurotol ; 45(5): e393-e399, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573598

RESUMO

HYPOTHESIS: Preimplantation word scores cannot reliably predict postimplantation outcomes. BACKGROUND: To date, there is no model based on preoperative data that can reliably predict the postoperative outcomes of cochlear implantation in the postlingually deafened adult patient. METHODS: In a group of 228 patients who received a cochlear implant between 2002 and 2021, we tested the predictive power of nine variables (age, etiology, sex, laterality of implantation, preimplantation thresholds and word scores, as well as the design, insertion approach, and angular insertion depth of the electrode array) on postimplantation outcomes. Results of multivariable linear regression analyses were then interpreted in light of data obtained from histopathological analyses of human temporal bones. RESULTS: Age and etiology were the only significant predictors of postimplantation outcomes. In agreement with many investigations, preimplantation word scores failed to significantly predict postimplantation outcomes. Analysis of temporal bone histopathology suggests that neuronal survival must fall below 40% before word scores in quiet begin to drop. Scores fall steeply with further neurodegeneration, such that only 20% survival can support acoustically driven word scores of 50%. Because almost all cochlear implant implantees have at least 20% of their spiral ganglion neurons (SGNs) surviving, it is expected that most cochlear implant users on average should improve to at least 50% word recognition score, as we observed, even if their preimplantation score was near zero as a result of widespread hair cell damage and the fact that ~50% of their SGNs have likely lost their peripheral axons. These "disconnected" SGNs would not contribute to acoustic hearing but likely remain electrically excitable. CONCLUSION: The relationship between preimplantation word scores and data describing the survival of SGNs in humans can explain why preimplantation word scores obtained in unaided conditions fail to predict postimplantation outcomes.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Humanos , Implante Coclear/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Percepção da Fala/fisiologia , Surdez/cirurgia , Resultado do Tratamento , Osso Temporal/cirurgia , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente
18.
Mol Nutr Food Res ; 68(9): e2400048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659317

RESUMO

Egg yolk lipids significantly alleviate dextran sulfate sodium (DSS)-induced colitis by inhibiting NLRP3 inflammasome, reversing gut microbiota dysbiosis, and increasing short chain fatty acids (SCFAs) concentrations. However, the role of gut microbiota and the relationship between SCFAs and NLRP3 inflammasome are still unknown. Here, this study confirms that antibiotic treatment abolishes the protective effect of egg yolk lipids on DSS-induced colonic inflammation, intestinal barrier damage, and lipopolysaccharide translocation. Fecal microbiota transplantation also supports that egg yolk lipids alleviate colitis in a gut microbiota-dependent manner. Then, the study investigates the relationship between SCFAs and NLRP3 inflammasome, and finds that SCFAs significantly suppress colitis via inhibiting colonic NLRP3 inflammasome activation and proinflammatory cytokines secretions (interleukin, IL)-1ß and IL-18, and combined treatment of SCFAs and MCC950 (NLRP3 inhibitor) shows a better activity against colitis and NLRP3 inflammasome activation. Together, these findings provide positive evidence for gut microbiorta-SCFAs-NLRP3 axis as a novel target involving in the therapy of inflammatory bowel disease.


Assuntos
Colite , Sulfato de Dextrana , Gema de Ovo , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Camundongos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Lipídeos , Interleucina-1beta/metabolismo
19.
J Sci Food Agric ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629632

RESUMO

BACKGROUND: Rice vinegar is a worldwide popular cereal vinegar worldwide and is typically produced in an open environment, and the ecosystem of solid-state fermentation is complicated and robust. The present study aimed to reveal the shaping force of the establishment of the ecosystem of Beijing rice vinegar, the core function microbiota and their correlation with critical environmental factors. RESULTS: The experimental findings revealed the changes in environmental factors, major metabolites and microbial patterns during Beijing rice vinegar fermentation were obtained. The major metabolites accumulated at the middle and late acetic acid fermentation (AAF) periods. Principal coordinates and t-test analyses revealed the specific bacterial and fungal species at corresponding stages. Kosakonia, Methlobacterium, Sphingomonas, unidentified Rhizobiaceae, Pseudozyma and Saccharomycopsis dorminated during saccharification and alcohol fermentation and early AAF, whereas Lactococcus, Acetobacter, Rhodotorula and Kazachstania dominated the later AAF stages. Canonical correspondence analysis of environmental factors with core microbiota. Temperature and total acid were the most significant factors correlated with the SAF bacterial profile (Pediococcus, Weissella, Enterococcus and Kosakonia). Ethanol was the most significant factor between AAF1 and AAF3, and mainly affected Acetobacter and Lactobacillus. Conversely, ethanol was the most significant factor in the SAF, AAF1 and AAF3 fungi communities; typical microorganisms were Saccharomyces and Malassezia. Furthermore, the predicted phenotypes of bacteria and their response to environmental factors were evaluated. CONCLUSION: In conclusion, the present study has provided insights into the process regulation of spontaneous fermentation and distinguished the key driving forces in the microbiota of Beijing rice vinegar fermentation. © 2024 Society of Chemical Industry.

20.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584275

RESUMO

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glicemia , Automonitorização da Glicemia , Exercício Físico/fisiologia , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA