Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4788-4802.e15, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37741279

RESUMO

Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plastídeos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Sensação Gravitacional , Raízes de Plantas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Proteínas de Membrana/metabolismo
2.
Food Res Int ; 168: 112780, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120226

RESUMO

The aim of this study was to investigate the effectiveness of Levilactobacillus brevis on the fermentation kinetics and flavor quality of radish paocai. Compared with spontaneous fermentation (SF), the radish paocai of inoculated fermentation (IF) using Levilactobacillus brevis PL6-1 as a starter could rapidly utilize sugar to produce acid, thus accelerating the fermentation process. The texture including hardness, chewiness, and springiness of the IF were all higher than that of the SF, and the IF paocai showed higher L value in color. L. brevis PL6-1 as a starter could increase the final levels of metabolites of mannitol (5.43 mg/g), lactic acid (543.44 mg/100 g) and acetic acid (87.79 mg/100 g). Fifteen volatile organic compounds (VOCs) were identified as key aroma-active compounds in radish paocai and 8 differential VOCs were considered as the potential markers. L. brevis PL6-1 could improve the levels of 1,8-cineole, 1-hexanol, hexanoic acid, 2-methoxy-4-vinylphenol, and eugenol, giving the radish paocai floral, sweet, and sour aroma, and reduce the unpleasant odor of garlic, onion, and pungent, contributed by erucin, diallyl disulfide, and allyl trisulfide. Sensory evaluation results showed that the appearance, taste, texture, and overall acceptability of IF paocai were all better than the SF group. Therefore, L. brevis PL6-1 could be a potential starter to improve the flavor and sensory quality for radish paocai fermentation.


Assuntos
Alho , Levilactobacillus brevis , Raphanus , Fermentação , Cebolas
3.
Annu Rev Chem Biomol Eng ; 14: 165-185, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888993

RESUMO

Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/química , Elétrons , Espectrometria de Massas , Catálise
4.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890502

RESUMO

Tomatoes (Solanum lycopersicum L.) are sensitive to chilling temperatures between 0 °C and 12 °C owing to their tropical origin. SlHSP17.7, a cytoplasmic heat shock protein, interacts with cation/calcium exchanger 1-like (SlCCX1-like) protein and promotes chilling tolerance in tomato fruits (Zhang, et al., Plant Sci., 2020, 298, 1-12). The overexpression of SlHSP17.7 can also promote cold tolerance in tomato plants, but its specific mechanism remains unclear. In this study, we show that the overexpression of SlHSP17.7 in tomato plants enhances chilling tolerance with better activity of photosystem II (PSII). Metabolic analyses revealed that SlHSP17.7 improved membrane fluidity by raising the levels of polyunsaturated fatty acids. Transcriptome analyses showed that SlHSP17.7 activated Ca2+ signaling and induced the expression of C-repeat binding factor (CBF) genes, which in turn inhibited the production of reactive oxygen species (ROS). The gene coexpression network analysis showed that SlHSP17.7 is coexpressed with SlMED26b. SlMED26b silencing significantly lowered OE-HSP17.7 plants' chilling tolerance. Thus, SlHSP17.7 modulates tolerance to chilling via both membrane fluidity and Ca2+-mediated CBF pathway in tomato plants.

5.
Nat Commun ; 13(1): 2656, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551449

RESUMO

In situ/operando surface enhanced infrared and Raman spectroscopies are widely employed in electrocatalysis research to extract mechanistic information and establish structure-activity relations. However, these two spectroscopic techniques are more frequently employed in isolation than in combination, owing to the assumption that they provide largely overlapping information regarding reaction intermediates. Here we show that surface enhanced infrared and Raman spectroscopies tend to probe different subpopulations of adsorbates on weakly adsorbing surfaces while providing similar information on strongly binding surfaces by conducting both techniques on the same electrode surfaces, i.e., platinum, palladium, gold and oxide-derived copper, in tandem. Complementary density functional theory computations confirm that the infrared and Raman intensities do not necessarily track each other when carbon monoxide is adsorbed on different sites, given the lack of scaling between the derivatives of the dipole moment and the polarizability. Through a comparison of adsorbed carbon monoxide and water adsorption energies, we suggest that differences in the infrared vs. Raman responses amongst metal surfaces could stem from the competitive adsorption of water on weak binding metals. We further determined that only copper sites capable of adsorbing carbon monoxide in an atop configuration visible to the surface enhanced infrared spectroscopy are active in the electrochemical carbon monoxide reduction reaction.

6.
J Am Chem Soc ; 144(3): 1258-1266, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014265

RESUMO

Mitigating nitrogen oxide (NOx) emissions is critical to tackle global warming and improve air quality. Conventional NOx abatement technologies for emission control suffer from a low efficiency at near ambient temperatures. Herein, we show an electrochemical pathway to reduce gaseous NOx that can be conducted at high reaction rates (400 mA cm-2) under ambient conditions. Various transition metals are evaluated for electrochemical reduction of NO and N2O to reveal the role of electrocatalyst in determining the product selectivity. Specifically, Cu is highly selective toward NH3 formation with >80% Faradaic efficiency in NO electroreduction. Furthermore, the partial pressure study of NO electroreduction revealed that a high NO coverage facilitates the N-N coupling reaction. In acidic electrolytes, the formation of NH3 is greatly favored, whereas the N2 production is suppressed. Additional mechanistic studies were conducted by using flow electrochemical mass spectrometry to gain further insights into reaction pathways. This work provides a promising avenue toward abating gaseous NOx emissions at ambient conditions by using renewable electricity.

7.
Acc Chem Res ; 55(5): 638-648, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041403

RESUMO

Carbon capture, utilization, and sequestration play an essential role to address CO2 emissions. Among all carbon utilization technologies, CO2 electroreduction has gained immense interest due to its potential for directly converting CO2 to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO2 electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO2 reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO2 electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO2 and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO2/CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO2 and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO2 H-type cell, vapor-fed CO2 three-compartment flow cell, and vapor-fed CO2 membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO2 electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO2 electrolysis technology, such as understanding pollutant effects in CO2 electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO2 and NOx in CO2 electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO2 electrolysis technology.


Assuntos
Dióxido de Carbono , Técnicas Eletroquímicas , Dióxido de Carbono/química , Catálise , Técnicas Eletroquímicas/métodos , Eletrodos , Oxirredução
8.
Front Genet ; 12: 683904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249100

RESUMO

Cation gradients in plant cellular compartments are maintained by the synergistic actions of various ion exchangers, pumps, and channels. Cation/Ca2+ exchanger (CCX) is one of the clades of the Ca2+/cation antiporter super family. Here, five SlCCX genes were identified in tomato. Sequence analysis indicated that SlCCXs have the conserved motifs as the CCX domain. Analysis of the expression level of each member of tomato CCX gene family under cation (Mg2+, Mn2+, Na+, and Ca2+) treatment was determined by qRT-PCR. Tomato CCX demonstrated different degrees of responding to cation treatment. Changes in SlCCX1-LIKE expression was induced by Mg2+ and Mn2+ treatment. Analysis of the expression of SlCCX genes in different tissues demonstrated that constitutive high expression of a few genes, including SlCCX1-LIKE and SlCCX5, indicated their role in tomato organ growth and development. Overexpression of SlCCX1-LIKE dramatically induced leaf senescence. Transcriptome analysis showed that genes related to ROS and several IAA signaling pathways were significantly downregulated, whereas ETH and ABA signaling pathway-related genes were upregulated in overexpression of SlCCX1-LIKE (OE-SlCCX1-LIKE) plants, compared with the wild type (WT). Moreover, overexpression of SlCCX1-LIKE plants accumulated more ROS content but less Mg2+ content. Collectively, the findings of this study provide insights into the base mechanism through which CCXs regulate leaf senescence in tomato.

9.
Angew Chem Int Ed Engl ; 59(41): 18003-18009, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32602629

RESUMO

This work reports on an assembling-calcining method for preparing gold-metal oxide core-satellite nanostructures, which enable surface-enhanced Raman spectroscopic detection of chemical reactions on metal oxide nanoparticles. By using the nanostructure, we study the photooxidation of Si-H catalyzed by CuO nanoparticles. As evidenced by the in situ spectroscopic results, oxygen vacancies of CuO are found to be very active sites for oxygen activation, and hydroxide radicals (*OH) adsorbed at the catalytic sites are likely to be the reactive intermediates that trigger the conversion from silanes into the corresponding silanols. According to our finding, oxygen vacancy-rich CuO catalysts are confirmed to be of both high activity and selectivity in photooxidation of various silanes.

10.
J Am Chem Soc ; 142(21): 9735-9743, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338904

RESUMO

Cu-catalyzed selective electrocatalytic upgrading of carbon dioxide/monoxide to valuable multicarbon oxygenates and hydrocarbons is an attractive strategy for combating climate change. Despite recent research on Cu-based catalysts for the CO2 and CO reduction reactions, surface speciation of the various types of Cu surfaces under reaction conditions remains a topic of discussion. Herein, in situ surface-enhanced Raman spectroscopy (SERS) is employed to investigate the speciation of four commonly used Cu surfaces, i.e., Cu foil, Cu micro/nanoparticles, electrochemically deposited Cu film, and oxide-derived Cu, at potentials relevant to the CO reduction reaction in an alkaline electrolyte. Multiple oxide and hydroxide species exist on all Cu surfaces at negative potentials, however, the speciation on the Cu foil is distinct from that on micro/nanostructured Cu. The surface speciation is demonstrated to correlate with the initial degree of oxidation of the Cu surface prior to the exposure to negative potentials. Combining reactivity and spectroscopic results on these four types of Cu surfaces, we conclude that the oxygen containing surface species identified by Raman spectroscopy are unlikely to be active in facilitating the formation of C2+ oxygenates in the CO reduction reaction.

11.
J Phys Chem Lett ; 10(6): 1286-1291, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830793

RESUMO

Pd-catalyzed Suzuki-Miyaura C-C cross-coupling is very central in chemistry. The question of whether the catalysis by using Pd nanoparticles (NPs) is heterogeneous (on the Pd surface) or homogeneous (by soluble Pd released from the NP surface) remains under fundamental physicochemical debate. This work reports on the in situ characterization of the Suzuki-Miyaura cross-coupling reactions by using surface-enhanced Raman spectroscopy. We find clear evidence of heterogeneous catalysis on the Pd surface. In contrast, the soluble Pd species leaching into the solution cannot catalyze the reaction, indicating a direct contact of the aryl halides with the metal surface is a prerequisite. Accordingly, the surface ligands and charge of the Pd NPs, which determine the molecule-metal contact, are very important in the couplings. By a simple exchange of the surface ligand or a surface modification of the support material, the catalytic activity of Pd NPs is improved due to the enhanced electric attraction between the metal and the reactant molecules.

12.
Chem Sci ; 10(41): 9605-9612, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055334

RESUMO

Plasmonic metal nanoparticles (NPs) have emerged as promising visible light harvesters to facilitate solar-to-chemical energy conversion via the generation of hot electrons by non-radiative decay of plasmons. As one of the most promising renewable energy production methods for the future, electrocatalytic water splitting is an ideal chemical reaction in which plasmonic NPs can be utilized for direct solar-to-fuel conversion. Due to the rapid carrier recombination on plasmonic NPs, hybrid photocatalysts integrating metals and semiconductors are usually employed to separate the hot electrons and holes. However, an understanding of the catalytic mechanism, which is critical for rational design of plasmonic electrocatalysts, including the interfacial charge transfer pathway and real reactive sites, has been lacking. Herein, we report on the combination of plasmonic Au NPs and semiconductors (Ni and/or Co hydroxides) for plasmon-promoted electrocatalytic water splitting. By using surface-enhanced Raman spectroscopy (SERS), we find a strong spontaneous interfacial charge transfer between Au and NiCo layered double hydroxide (LDH), which facilitates both the oxygen and hydrogen evolution reactions. The real catalytic sites on the hybrid material are confirmed by selective blocking of the metal surface with a thiol molecular monolayer. It is found that the plasmon-promoted oxygen evolution occurs on the LDH semiconductor but surprisingly, the hydrogen evolution sites are mainly located on the Au NP surface. This work demonstrates the critical role of interfacial charge transfer in hot electron-driven water splitting and paves the way for rational design of high-performance plasmonic electrocatalysts.

13.
Nat Commun ; 9(1): 2373, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915288

RESUMO

Electrochemical deposition is a facile strategy to prepare functional materials but suffers from limitation in thin films and uncontrollable interface engineering. Here we report a universal electrosynthesis of metal hydroxides/oxides on varied substrates via reduction of oxyacid anions. On graphitic substrates, we find that the insertion of nitrate ion in graphene layers significantly enhances the electrodeposit-support interface, resulting in high mass loading and super hydrophilic/aerophobic properties. For the electrocatalytic oxygen evolution reaction, the nanocrystalline cerium dioxide and amorphous nickel hydroxide co-electrodeposited on graphite exhibits low overpotential (177 mV@10 mA cm-2) and sustains long-term durability (over 300 h) at a large current density of 1000 mA cm-2. In situ Raman and operando X-ray diffraction unravel that the integration of cerium promotes the formation of electrocatalytically active gamma-phase nickel oxyhydroxide with exposed (003) facets. Therefore, combining anion intercalation with cathodic electrodeposition allows building robust electrodes with high electrochemical performance.

14.
Chem Commun (Camb) ; 53(67): 9312-9315, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28771261

RESUMO

Metal-gas batteries that remove CO gases would provide enormous environmental benefits. We report here Na-CO batteries using the combination of a sodium anode and a binder-free multiwall carbon nanotube cathode with a CO reactant. The constructed Na-CO batteries show a high discharge capacity of 8000 mA h g-1 based on the mass of carbon nanotubes (corresponding to ∼865.9 W h kg-1 based on the mass of total active materials) and a stable cycling of 70 cycles with an increased gap of only 3.7 mV. This work offers a promising strategy for efficient utilization of CO to generate electricity through an electrochemical conversion method.

15.
Sci Adv ; 3(2): e1602396, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28164158

RESUMO

Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]-4% SiO2/NaClO4-TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm-1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm-2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g-1 with a fixed capacity of 1000 mA·hour g-1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg-1). This study makes quasi-solid state Na-CO2 batteries an attractive prospect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA