Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Microbiol ; 14: 1178575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333647

RESUMO

Introduction: Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods: The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results: The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion: It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.

2.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175187

RESUMO

Two new stilbenoids, cajanstilbenoid C (1) and cajanstilbenoid D (2), together with eight other known stilbenoids (3-10) and seventeen known flavonoids (11-27), were isolated from the petroleum ether and ethyl acetate portions of the 95% ethanol extract of leaves of Cajanus cajan (L.) Millsp. The planar structures of the new compounds were elucidated by NMR and high-resolution mass spectrometry, and their absolute configurations were determined by comparison of their experimental and calculated electronic circular dichroism (ECD) values. All the compounds were assayed for their inhibitory activities against yeast α-glucosidase. The results demonstrated that compounds 3, 8-9, 11, 13, 19-21, and 24-26 had strong inhibitory activities against α-glucosidase, with compound 11 (IC50 = 0.87 ± 0.05 µM) exhibiting the strongest activity. The structure-activity relationships were preliminarily summarized. Moreover, enzyme kinetics showed that compound 8 was a noncompetitive inhibitor, compounds 11, 24-26 were anticompetitive, and compounds 9 and 13 were mixed-competitive.


Assuntos
Cajanus , Estilbenos , Flavonoides/farmacologia , Flavonoides/química , Cajanus/química , alfa-Glucosidases , Estilbenos/farmacologia , Estilbenos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Glicosídeo Hidrolases/farmacologia
3.
Kidney Dis (Basel) ; 9(1): 58-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36756085

RESUMO

Introduction: Phosphatase and tensin (PTEN) is a multifunctional gene associated with the normal development and physiological function of various tissues including the kidney. However, its role in renal tubular reabsorption function has not been well elucidated. Methods: We generated a renal tubule-specific Pten knockout mouse model by crossing Ptenfl/fl mice with Ksp-Cre transgenic mice, evaluated the effect of Pten loss on renal tubular function, and investigated the underlying mechanisms. Results: Pten loss resulted in abnormal renal structure and function and water retention in multiple organs. Our results also demonstrated that aquaporin-2 (AQP2), an important water channel protein, was upregulated and concentrated on the apical plasma membrane of collecting duct cells, which could be responsible for the impaired water balance in Pten loss mice. The regulation of Pten loss on AQP2 was mediated by protein kinase B (AKT) activation. Conclusions: Our results reveal a connection between PTEN gene inactivation and water retention, suggesting the importance of PTEN in normal kidney development and function.

4.
Sci Total Environ ; 868: 161755, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690099

RESUMO

The extreme change of water storage in the Yangtze River Basin (YRB) have a significant impact on identifying the characteristics of drought events in the basin. To quantify the historical hydrological drought characteristics, we put forward new framework to reconstruct the pre-2003 total water storage anomaly (TWSA) through the nonlinear autoregressive with exogenous input (NARX) model. The NARX model is developed by the Gravity Recovery and Climate Experiment (GRACE) based TWSA and the hydrometeorological data after removing the trend and seasonal signals from 2003 to 2017, then the full pre-2003 reconstructed TWSA signals were obtained by synthesizing hydrometeorological data driven NARX model results from 1979 to 2002 and GRACE-estimated seasonal cycle. We combined the reconstructed TWSA with GRACE observed TWSA to characterize the historical hydrological drought events (onset, end, duration, magnitude, intensity, and recovery) in the YRB. The results show that the drought-related extreme anomalies in total water storage can be captured successfully. From 1979 to 2017, 23 hydrological drought events were identified in the YRB with an average recovery time of 4.7 months. The longest drought lasted 28 months spanning from July 2006 to October 2008. The exceptional drought occurred in September 2011 reached to the largest deficit with a magnitude of -48.5 mm and minimum drought severity index (DSI) of -2.3. Comparing to the period of 1979-1999, the frequency, duration, and average recovery time of drought events increased significantly since 2000 in the YRB. Furthermore, we found that the duration and average recovery time of the drought events have an exponential relationship with the severity, which could help us to estimate the potential recovery time when drought events occur and predict water resources dynamic in the future.

5.
Chem Biodivers ; 19(11): e202200414, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36200645

RESUMO

A pair of new lignan conformers (1-2), one new flavonoid glycoside (3), as well as nineteen known compounds were purified from the twigs and leaves of Cajanus cajan (L.) Millsp.. The planar structures of the unknown compounds were determined via NMR and high-resolution mass spectrometry, while their absolute configurations were elucidated via comparison between their experimental and calculated electronic circular dichroism (ECD) values. All the isolated compounds were assayed for their α-glucosidase inhibitory activities. The results demonstrated that compounds 8-12, 15-16, 18-19, 21-22 had strong inhibition activities, with compound 10 (IC50 =0.4±0.21 µM) most active. The structure-activity relationships were preliminarily summarized. Enzyme kinetics showed that compounds 8, 9, 15-16, 18-19, 21-22 were non-competitive inhibitors and compounds 10-12 were anti-competitive ones.


Assuntos
Flavonoides , Inibidores de Glicosídeo Hidrolases , Lignanas , alfa-Glucosidases , Cajanus/química , Flavonoides/química , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Lignanas/química , Lignanas/farmacologia , Folhas de Planta/química
8.
Chemosphere ; 296: 134025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218781

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of toxic organic pollutants. Until now, they have been detected in many regions and various environmental matrix. However, not all PAHs are usually detected by researchers, and no methods is established to analyze systematically hundreds of PAHs. In this study, 123 PAHs were identified and quantified using gas chromatography-tandem triple-quadrupole mass spectrometry (GC-MS/MS), which were divided into 3 groups: 32 regular PAHs (R-PAHs), 50 methyl-PAHs (Me-PAHs), 30 Nitro-PAHs (N-PAHs) and 11 hydroxyl-PAHs (OH-PAHs). The developed method was applied to detect the target PAHs in 6 marine gaseous samples and 6 particulate samples collected on board the research vessel Snow Dragon. Limits of detection (LOD) and limits of quantification (LOQ) were determined from 0.009 to 2.50 and 0.03-8.33 pg/m3, respectively. Recoveries of the internal standards in atmosphere were from 88% to 112%, 70%-104%, and 72%-102% for R-PAHs、Me-PAHs、N-PAHs and OH-PAHs, respectively, which showed the reliability of the experimental method. The total concentrations of 123 PAHs in marine air and particle samples were from 1532 to 7877 and 206-1022 pg/m3, respectively.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Atmosfera/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299645

RESUMO

Water matrix certified reference material (MCRM) of volatile organic compounds (VOCs) is used to provide quality assurance and quality control (QA/QC) during the analysis of VOCs in water. In this research, a water MCRM of 28 VOCs was developed using a "reconstitution" approach by adding VOCs spiking, methanol solution into pure water immediately prior to analysis. The VOCs spiking solution was prepared gravimetrically by dividing 28 VOCs into seven groups, then based on ISO Guide 35, using gas chromatography-mass spectrometry (GC-MS) to investigate the homogeneity and long-term stability. The studies of homogeneity and long-term stability indicated that the batch of VOCs spiking solution was homogeneous and stable at room temperature for at least 15 months. Moreover, the water MCRM of 28 VOCs was certified by a network of nine competent laboratories, and the certified values and expanded uncertainties of 28 VOCs ranged from 6.2 to 17 µg/L and 0.5 to 5.3 µg/L, respectively.

10.
Animals (Basel) ; 11(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806167

RESUMO

The liver can synthesize vitellogenin, the precursor of vitellin, which is needed for oocyte development and maturation. Here, we investigated the effects of infertility on liver structure, hormone regulation, and gene and protein networks in Japanese flounder (Paralichthys olivaceus). Results showed that the liver of infertile fish had fewer vacuoles and significantly lower serum vitellogenin (VTG) level than in liver of fertile fish. Whole transcriptomics analysis between infertile and fertile groups identified 2076 significantly differentially expressed (DE) mRNAs, 431 DE lncRNAs, 265 DE circRNAs, and 53 DE miRNAs. Proteomics analysis identified 838 DE proteins. Integrated analysis of whole transcriptomics and proteomics revealed 60 significantly DE genes and proteins associated with metabolism, immunity, signal transduction, and steroid biosynthesis. Moreover, non-coding RNA (miRNAs, circRNA, and lncRNA) transcripts involved in metabolism, immunity, and signal transduction in infertile liver were identified. In conclusion, this study shows that gonadal infertility is associated with not only changes in histological structure and hormone secretion but also changes in metabolism, immunity, and signal transduction networks in the liver. These results provide valuable information concerning the mechanism underlying infertility in fish.

11.
J Mol Biol ; 433(17): 166914, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33676926

RESUMO

Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.


Assuntos
Preparações Farmacêuticas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Humanos , Ligantes
12.
J Biochem Mol Toxicol ; 35(5): e22728, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33592126

RESUMO

Arsenic trioxide (ATO) has been shown to have antitumor effect in different tumors, although the underlying mechanisms are not fully understood. Autophagy plays a critical role in tumorigenesis and cancer therapy and has been found to be activated by ATO in different cells. However, the role of autophagy in the antitumor effect of ATO has not yet been elucidated. In this study, we investigated the role of autophagy in the antiangiogenic effect of ATO in human umbilical vein endothelial cells (HUVECs) in vitro and its underlying mechanism. Our data showed that ATO suppresses angiogenesis and induces autophagy in HUVECs through upregulation of forkhead box protein O3 (FoxO3a). Co-incubated with autophagy inhibitor or knockdown of FoxO3a effectively inhibited ATO-induced autophagy and reversed the antiangiogenic effect of ATO, indicating that ATO-induced autophagy plays an antiangiogenic role in HUVECs. Our results highlight the importance of autophagy in the antiangiogenic effect of ATO and provide an improved understanding of the function of ATO.


Assuntos
Inibidores da Angiogênese/farmacologia , Trióxido de Arsênio/farmacologia , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Patológica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
13.
RSC Adv ; 11(12): 7025-7036, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35423197

RESUMO

We investigated the short- and medium-range structural features of sodium aluminosilicate glasses with various P2O5 (0-7 mol%) content and Al/Na ratios ranging from 0.667 to 2.000 by using molecular dynamics simulations. The local environment evolution of network former cations (Si, Al, P) and the extent of clustering behavior of modifiers (Na+) is determined through pair distribution function (PDF), total correlation function (TDF), coordination number (CN), Q x n distribution and oxygen speciation analysis. We show that Al-O-P and Si-O-Al linkage is preferred over other connections as compared to a random model and that Si-O-Si linkage is promoted by the P2O5 addition, which is related to structural heterogeneity and generates well-separated silicon-rich and aluminum-phosphorus-rich regions. Meanwhile, due to the relatively high propensity of Al to both Si and P, heterogeneity can be partly overcome with high Al content. A small amount of Si-O-P linkages have been detected at the interface of separated regions. Clustering of Na+ is also observed and intensified with the addition of P2O5. Based on the simulated structural information, a modified random network model for P2O5-bearing sodium aluminosilicate glass has been proposed, which could be useful to optimize the mobility of sodium ions and design novel functional glass compositions.

14.
Environ Pollut ; 263(Pt B): 114516, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283401

RESUMO

Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC50) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC50 was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.


Assuntos
Linguado , Animais , Cobalto , Brânquias , Japão , Níquel
15.
Artif Cells Nanomed Biotechnol ; 48(1): 197-205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31851829

RESUMO

Polycystic ovarian syndrome (PCOS) is a typical disease of female endocrine and metabolic abnormalities. miR-155, famous as a multifunctional miRNA, promotes the proliferation, migration and invasion of human cancer cells. Therefore, we aimed to explore its regulation mechanism in PCOS. BrdU incorporation and apoptosis assay were used to test KGN cell survival. Luciferase activity experiment was employed to test targeting link between miR-155 and programmed cell death 4 (PDCD4). Migration and invasion assay were operated to examine the influence of miR-155 and PDCD4 in migration and invasion of KGN cells. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay and western blot analysis were utilized to measure expression of miR-155 and other relative factors. We found that expression of miR-155 was high in PCOS patients' tissues and it promoted proliferation, migration and invasion in KGN cells. Further studies found that PDCD4 was down-regulated by miR-155 and was a target of miR-155. Overexpression of PDCD4 promoted cell apoptosis to mitigate PCOS. Besides, up-regulation of PDCD4 suppressed PI3K/AKT and JNK signal pathways. To sum up, miR-155 promoted proliferation, migration, invasion and the activation of PI3K/AKT and JNK pathways in KGN cells through negatively regulating PDCD4.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Movimento Celular/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Síndrome do Ovário Policístico/patologia , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
16.
Life Sci ; 233: 116709, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369760

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article "… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated", the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia , Cisplatino/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Proteína Beclina-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
17.
J Mol Biol ; 430(24): 5029-5049, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30381148

RESUMO

The Drosophila EAG (dEAG) potassium channel is the founding member of the superfamily of KNCH channels, which are involved in cardiac repolarization, neuronal excitability and cellular proliferation. In flies, dEAG is involved in regulation of neuron firing and assembles with CaMKII to form a complex implicated in memory formation. We have characterized the interaction between the kinase domain of CaMKII and a 53-residue fragment of the dEAG channel that includes a canonical CaMKII recognition sequence. Crystal structures together with biochemical/biophysical analysis show a substrate-kinase complex with an unusually tight and extensive interface that appears to be strengthened by phosphorylation of the channel fragment. Electrophysiological recordings show that catalytically active CaMKII is required to observe active dEAG channels. A previously identified phosphorylation site in the recognition sequence is not the substrate for this crucial kinase activity, but rather contributes importantly to the tight interaction of the kinase with the channel. The available data suggest that the dEAG channel is a docking platform for the kinase and that phosphorylation of the channel's kinase recognition sequence modulates the strength of the interaction between the channel and the kinase.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Drosophila melanogaster/química , Fenômenos Eletrofisiológicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Conformação Proteica
18.
J Gen Physiol ; 149(2): 249-260, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28122815

RESUMO

Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide-binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an "intrinsic ligand." The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance-voltage (G-V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole-Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577-708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole-Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Ativação do Canal Iônico , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto , Ligação Proteica , Xenopus
19.
Environ Pollut ; 218: 1334-1341, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613322

RESUMO

This study aimed to investigate the accumulation of polybrominated diphenyl ethers (PBDEs) in the brain compared with that in other tissues among different vertebrates. We collected mice, chickens, ducks, frogs, and fish from an e-waste recycling region in Taizhou, China, and measured PBDE concentrations in brain, liver and muscle tissues. The levels of PBDE in the tissues of mice, chickens, ducks, frogs and fish ranged 0.45-206, 0.06-18.8, 1.83-112, 2.75-108, and 0.02-32.0 ng/g wet weight, respectively. Preferential distribution in the liver and muscle relative to the brain was observed for PBDEs in mice, chickens, ducks and frogs. However, a high retention in the brain compared to the liver and muscle was observed in fish. Comparison of the brain/liver concentration (B/L) ratios revealed differences in PBDEs accumulation in the brain among these vertebrates. PBDEs accumulation in the brain was greatest in fish, followed by frogs, while the lowest accumulation occurred in the brains of mammals and birds. The findings apparently coincided with the evolution of the blood-brain barrier (BBB) across vertebrates, i.e. the BBB of fish might be less efficient than those of mammals, birds and amphibian. Low brominated congeners (such as BDE-28, BDE-47 and BDE-99) were predominant in the brains of investigated vertebrates, whereas BDE-209 was most abundant in liver and muscle tissues of mice, chickens and ducks. Significant differences in B/L ratios among PBDE congeners were found in both mice and chickens (p < 0.05). Particularly in mice, the B/L ratios of PBDE congeners presented a declining trend with increased bromine number. Our findings suggested that low brominated congeners might have a higher capacity to penetrate the BBB and accumulate in the brain, whereas high brominated congeners such as BDE-209 might have less potency to pass through the barrier. Further experimental studies are needed to confirm our findings.


Assuntos
Encéfalo/metabolismo , Galinhas/metabolismo , Patos/metabolismo , Peixes/metabolismo , Éteres Difenil Halogenados/análise , Fígado/metabolismo , Músculo Esquelético/metabolismo , Ranidae/metabolismo , Animais , Barreira Hematoencefálica/química , China , Masculino , Camundongos , Reciclagem/métodos
20.
Chemosphere ; 118: 253-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25290171

RESUMO

To reveal what degree bioaccumulation of polybrominated diphenyl ethers (PBDEs) depends on exposure time and other factors, we conducted a semi-field experiment for a year (June 2008-June 2009) in a village in an e-waste recycling site in Taizhou, China. Approximately one hundred of juvenile ducks (Anas domestica Linnaeus) were entrusted to a villager. The ducks lived and forged in a PBDE-polluted pond from the late March to the end of November. Fish and mudsnails that were heavily polluted by PBDEs were main food. In cold days (from December to the middle March), the ducks lived in the villager' house, and mainly fed on paddy, which contained lower concentrations of PBDEs than fish and mudsnails. The female ducks were sampled for PBDE analysis every three months. We found that the ∑PBDE concentrations in duck liver, muscle, lung and brain fluctuated greatly with the changes of exposure levels that were determined by the environment and diets, but the ∑PBDE concentrations in fat tissue increased successively with time. Congener analysis demonstrated that the successive increase in the ∑PBDE concentrations with time in fat tissue was due to the successive increase in BDE-209, -183 and -153 concentrations, with large fluctuations of low brominated congeners. The results show that PBDE concentrations in liver, muscle, lung and brain tissues heavily depends on exposure levels rather than exposure time. In fat tissue, by contrast, PBDE concentrations (mainly high brominated congeners) slightly depends on exposure levels but heavily depend on time relative to other tissues, implying that high brominated congeners seem to have longer half-lives than low brominated congeners in fat tissue.


Assuntos
Patos/metabolismo , Exposição Ambiental/análise , Bifenil Polibromatos/análise , Poluentes Químicos da Água/análise , Animais , Encéfalo/metabolismo , China , Éteres , Feminino , Peixes/metabolismo , Cadeia Alimentar , Fígado/metabolismo , Pulmão/metabolismo , Músculos/metabolismo , Bifenil Polibromatos/farmacocinética , Caramujos/metabolismo , Fatores de Tempo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA