Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(24): 15727-15736, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179616

RESUMO

We applied the density functional theory and nonequilibrium Green's function method (DFT + NEGF) to investigate the relationship between the conductance and chain length in the stretching process, the asymmetric coupling of contact points, and the influence of positive and negative biases on the electron transport properties of the nanojunctions formed by the coupling of (BN) n (n = 1-4) linear chains and Au(100)-3 × 3 semi-infinite electrodes. We find that the BN junction has the lowest stability and the (BN)2 junction has the highest stability. Under zero bias, the equilibrium conductance decreases as the chain length increases; px and py orbitals play a leading role in electron transport. In the bias range of -1.6 to 1.6 V, the current of the (BN) n (n = 1-4) linear chains increases linearly with increasing voltage. Under the same bias voltage, (BN)1 has the largest current, so its electron transport property is the best. The rectification effect reflects the asymmetry of the structure of BN linear chains themselves and the asymmetry of coupling with the Au electrode surfaces at both ends. With the chain length increasing, the transmission spectrum near E f is suppressed, the tunneling current decreases, and the rectification ratio increases. (BN)4 molecular junctions have the largest rectification ratio, reaching 13.32 when the bias voltage is 1.6 V. Additionally, the Au-N strong coupling is more conducive to the electron transport of the molecular chain than the Au-B weak coupling. Our calculations provide an important theoretical reference for the design and development of BN linear-chain nanodevices.

2.
ACS Appl Mater Interfaces ; 13(7): 8700-8709, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33556242

RESUMO

We here report a new pentagonal network structure of the PtM2 (M = S, Se, Te) monolayers with the P21/c (no. 14) space group. The electronic structure and thermoelectric properties of the pentagonal PtM2 monolayers are calculated through the VASP and BoltzTraP codes. We verify their dynamic and thermodynamic stabilities by calculating their phonon spectra and simulating ab initio molecular dynamics. It is found that the new material belongs to the medium-wide indirect band gap semiconductors from the PBE and HSE06 methods. At 300 K, the lattice thermal conductivities (Kl) of the pentagonal PtTe2 in the x and y directions are the smallest among these three materials, being 1.77 and 5.17 W/m K, respectively. The anisotropic zT values (2.60/1.14) in the x/y direction of the pentagonal PtTe2 at 300 K are much greater than those of the pentagonal PtSe2 (1.75/0.82) and the pentagonal PtS2 (0.58/0.16) at 300 K. Importantly, the p-type pentagonal PtTe2 also has excellent thermoelectric properties at 600 K, with a zT value of 5.03 in the x direction, indicating that the p-type pentagonal PtTe2 has a good application potential in the thermoelectric field.

3.
Phys Chem Chem Phys ; 21(27): 15167-15176, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246206

RESUMO

Weyl semimetal, a newly developed thermoelectric material, has aroused much interest due to its extraordinary transport properties. In this work, the thermoelectric transport properties of NbX (X = P and As), a prototypical Weyl semimetal, are investigated using the first-principles calculations together with Boltzmann transport theory. The calculated room-temperature lattice thermal conductivities along the a and c directions are 2.0 W mK-1 and 0.6 W mK-1 for NbP and 1.4 W mK-1 and 0.4 W mK-1 for NbAs, respectively. The low thermal conductivities may be useful in the thermoelectric applications. It is found that the acoustic branches have obvious contribution to the total lattice thermal conductivity, and the size dependence of the thermal conductivities can provide guidance for designing thermoelectric nanostructures. Our results show that the anisotropic structures of these compounds bring about the anisotropy of transport coefficients along the a and c directions, and the preferred direction is the c direction in thermoelectric applications. Moreover, NbP and NbAs show high ZT values of 0.82 and 0.50 along the c direction for p-type at an optimal carrier concentration, indicating that they are potential thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA