Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Pharm Biol ; 62(1): 423-435, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38757785

RESUMO

CONTEXT: Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE: This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS: We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS: Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION: This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.


Assuntos
Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Animais
2.
Biochem Pharmacol ; 225: 116313, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788963

RESUMO

Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.

3.
Front Pharmacol ; 15: 1365802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523633

RESUMO

Arachidonic acid (AA) is a main component of cell membrane lipids. AA is mainly metabolized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). Esterified AA is hydrolysed by phospholipase A2 into a free form that is further metabolized by COX, LOX and CYP450 to a wide range of bioactive mediators, including prostaglandins, lipoxins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Increased mitochondrial oxidative stress is considered to be a central mechanism in the pathophysiology of the kidney. Along with increased oxidative stress, apoptosis, inflammation and tissue fibrosis drive the progressive loss of kidney function, affecting the glomerular filtration barrier and the tubulointerstitium. Recent studies have shown that AA and its active derivative eicosanoids play important roles in the regulation of physiological kidney function and the pathogenesis of kidney disease. These factors are potentially novel biomarkers, especially in the context of their involvement in inflammatory processes and oxidative stress. In this review, we introduce the three main metabolic pathways of AA and discuss the molecular mechanisms by which these pathways affect the progression of acute kidney injury (AKI), diabetic nephropathy (DN) and renal cell carcinoma (RCC). This review may provide new therapeutic targets for the identification of AKI to CKD continuum.

4.
Acta Pharmacol Sin ; 45(1): 137-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640899

RESUMO

Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and ß-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and ß-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of ß-catenin and its downstream gene products, including Snail1 and Twist; treatment with a ß-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream ß-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/ß-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.


Assuntos
Nefropatias , Podócitos , Humanos , Ratos , Animais , beta Catenina/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Sistema Renina-Angiotensina , Nefropatias/metabolismo , Proteinúria
5.
Br J Pharmacol ; 181(1): 162-179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594378

RESUMO

BACKGROUND AND PURPOSE: Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH: In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS: Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS: Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite Membranosa , Indóis , Lactobacillus , Receptores de Hidrocarboneto Arílico , Lactobacillus/fisiologia , Glomerulonefrite Membranosa/microbiologia , Triptofano/farmacologia , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
6.
Heliyon ; 9(9): e20019, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809643

RESUMO

Considerable achievements were realized in illuminating underlying pathological mechanisms of patients with idiopathic membranous nephropathy (IMN). Although IMN patients are well diagnosed before they reach renal failure, no currently available drug intervention is effective in halting IMN progression. In this study, we assess Moshen granule (MSG) effect on IMN patients and cationic bovine serum albumin (CBSA)-induced rats. Increasing studies has indicated that activation of aryl hydrocarbon receptor (AHR) was related to oxidative stress and inflammation. We further determine MSG effect on AHR, nuclear factor ƙB (NF-ƙB) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the CBSA-induced rats. MSG markedly reduces proteinuria and improves kidney function in both IMN patients and rats induced by CBSA. MSG markedly inhibits increased mRNA expressions of intrarenal AHR and its four downstream target genes including CYP1A1, CYP1A2, CYP1B1 and COX-2 compared with untreated CBSA-induced rats. This is accompanied by markedly downregulated protein expressions of p-IƙBα and NF-ƙB p65 and its downstream gene products including MCP-1, COX-2, 12-LOX, iNOS, p47phox and p67phox, while markedly preserves protein expressions of Nrf2 and its downstream gene products including catalase, HO-1, GCLM, GCLC, MnSOD and NQO1 in the kidney tissues. These data suggests MSG blunts podocyte damage through inhibiting activation of NF-ƙB/Nrf2 pathway via AHR signaling. This finding may provide a promising therapy for treatment of IMN through oxidative stress and inflammation.

7.
Free Radic Biol Med ; 207: 89-106, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451370

RESUMO

Membranous nephropathy (MN) patients are diagnosed by the presence of phospholipase A2 receptor (PLA2R) before they progress to renal failure. However, the subepithelium-like immunocomplex deposit-mediated downstream molecular pathways are poorly understood. The aryl hydrocarbon receptor (AHR), NF-ƙB and Nrf2 pathways play central roles in the pathogenesis and progression of chronic kidney disease. However, their mutual effects on MN require further examination. Thus, we investigated the effect of AHR signalling on the NF-ƙB and Nrf2 pathways in IMN patients, cationic bovine serum albumin (CBSA)-injected rats and zymosan activation serum (ZAS)-treated podocytes. IMN patients show significantly decreased serum total protein and albumin levels, increased urine protein levels and intrarenal IgG4 and PLA2R protein expression in glomeruli compared with controls. IMN patients exhibited increased mRNA expression of intrarenal AHR and its target genes, including CYP1A1, CYP1A2, CYP1B1 and COX-2. This increase was accompanied by significantly upregulated protein expression of CD3, NF-ƙB p65 and COX-2 and significantly downregulated Nrf2 and HO-1 expression. Similarly, CBSA-induced rats showed severe proteinuria and activated intrarenal AHR signalling. This was accompanied by significantly upregulated protein expression of intrarenal p-IκBα, NF-κB p65 and its gene products, including COX-2, MCP-1, iNOS, 12-LOX, p47phox and p67phox, and significantly downregulated protein expression of Nrf2 and its gene products, including HO-1, catalase, GCLC, GCLM, MnSOD and NQO1. These results were further verified in ZAS-induced podocytes. Treatment with the AHR antagonist CH223191 and AHRsiRNA significantly preserved podocyte-specific protein expression and improved the NF-ƙB and Nrf2 pathways in ZAS-induced podocytes. In contrast, similar results were obtained in ZAS-induced podocytes treated with the NF-ƙB inhibitor BAY 11-7082 and NF-κBp65 siRNA. However, neither method had a significant effect on AHR signalling. Collectively, these results indicate that the NF-ƙB pathway is a downstream target of AHR signalling. Our findings suggest that blocking AHR signalling inhibits oxidative stress and inflammation, thereby improving proteinuria and renal injury.


Assuntos
Glomerulonefrite Membranosa , Animais , Ratos , Ciclo-Oxigenase 2/metabolismo , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteinúria , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Podócitos/metabolismo
8.
Aging Dis ; 14(5): 1633-1650, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196129

RESUMO

Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-ß) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-ß in normal organs, aging, and fibrotic tissues is discussed: TGF-ß signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.

9.
Int Immunopharmacol ; 120: 110317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207447

RESUMO

Membranous nephropathy (MN) is one of the most common causes of non-diabetic nephrotic syndrome in adults. About 80% of cases are renal limited (primary MN) and 20% are associated with other systemic diseases or exposures (secondary MN). Autoimmune reaction is the main pathogenic factor of MN, and the discovery of autoantigens including the phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A has led to new insights into the pathogenesis, they can induce humoral immune responses led by IgG4 makes them suitable for the diagnosis and monitoring of MN. In addition, complement activation, genetic susceptibility genes and environmental pollution are also involved in MN immune response. In clinical practice, due to the spontaneous remission of MN, the combination of supportive therapy and pharmacological treatment is widely used. Immunosuppressive drugs are the cornerstone of MN treatment, and the dangers and benefits of this approach vary from person to person. In summary, this review provides a more comprehensive review of the immune pathogenesis, interventions and unresolved issues of MN in the hope of providing some new ideas for clinical and scientific researchers in the treatment of MN.


Assuntos
Glomerulonefrite Membranosa , Síndrome Nefrótica , Adulto , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Trombospondinas/metabolismo , Receptores da Fosfolipase A2/metabolismo , Rim/patologia , Síndrome Nefrótica/complicações , Autoanticorpos
10.
Phytomedicine ; 114: 154763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001295

RESUMO

BACKGROUND: Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE: We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS: We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/ß-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS: MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and ß-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and ß-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, ß-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and ß-catenin siRNA. CONCLUSION: This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/ß-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new ß-catenin inhibitor that inhibits the Wnt1/ß-catenin pathway to retard MN in patients.


Assuntos
Glomerulonefrite Membranosa , Sistema Renina-Angiotensina , Ratos , Animais , beta Catenina/metabolismo , Proteinúria , Via de Sinalização Wnt
11.
Ageing Res Rev ; 85: 101861, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693450

RESUMO

Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.


Assuntos
Nefropatias , Qualidade de Vida , Humanos , Nefropatias/etiologia , Rim/patologia , Envelhecimento , Lipídeos , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Fibrose
12.
Chem Biol Interact ; 369: 110289, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455676

RESUMO

Fibrosis refers to the excessive deposition of extracellular matrix components in the processes of wound repair or tissue regeneration after tissue damage. Fibrosis occurs in various organs such as lung, heart, liver, and kidney tissues, resulting in the failure of organ structural integrity and its functional impairment. It has long been thought to be relentlessly progressive and irreversible process, but both preclinical models and clinical trials in multiorgans have shown that fibrosis is a highly dynamic process. Transforming growth factor-beta (TGF-ß) is a superfamily of related growth factors. Many studies have described that activation of profibrotic TGF-ß signaling promotes infiltration and/or proliferation of preexisting fibroblasts, generation of myofibroblasts, extracellular matrix deposition, and inhibition of collagenolysis, which leads to fibrosis in the pathological milieu. This review describes the effect of TGF-ß signaling in fibrotic-associate lung, heart, liver, and kidney tissues, followed by a detailed discussion of canonical and non-canonical TGF-ß signaling pathway. In addition, this review also discusses therapeutic options by using natural products and chemical agents, for targeting tissue fibrosis via modulating TGF-ß signaling to provide a more specific concept-driven therapy strategy for multiorgan fibrosis.


Assuntos
Coração , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Transdução de Sinais , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
13.
Acta Pharmacol Sin ; 44(2): 393-405, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35922553

RESUMO

Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.


Assuntos
Insuficiência Renal Crônica , Ratos , Animais , Insuficiência Renal Crônica/tratamento farmacológico , Fosfatidilcolinas/efeitos adversos , Metabolismo dos Lipídeos , Adenina/uso terapêutico , Fosfolipases/efeitos adversos , Fosfolipases/metabolismo
14.
Front Pharmacol ; 14: 1335094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293668

RESUMO

Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.

16.
Front Pharmacol ; 13: 964370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059935

RESUMO

Chronic kidney disease (CKD) is a major worldwide public health problem. The increase in the number of patients with CKD and end-stage kidney disease requesting renal dialysis or transplantation will progress to epidemic proportions in the next several decades. Although blocking the renin-angiotensin system (RAS) has been used as a first-line standard therapy in patients with hypertension and CKD, patients still progress towards end-stage kidney disease, which might be closely associated with compensatory renin expression subsequent to RAS blockade through a homeostatic mechanism. The Wnt/ß-catenin signalling pathway is the master upstream regulator that controls multiple intrarenal RAS genes. As Wnt/ß-catenin regulates multiple RAS genes, we inferred that this pathway might also be implicated in blood pressure control. Therefore, discovering new medications to synchronously target multiple RAS genes is necessary and essential for the effective treatment of patients with CKD. We hypothesized that Shenkang injection (SKI), which is widely used to treat CKD patients, might ameliorate CKD by inhibiting the activation of multiple RAS genes via the Wnt/ß-catenin signalling pathway. To test this hypothesis, we used adenine-induced CKD rats and angiotensin II (AngII)-induced HK-2 and NRK-49F cells. Treatment with SKI inhibited renal function decline, hypertension and renal fibrosis. Mechanistically, SKI abrogated the increased protein expression of multiple RAS elements, including angiotensin-converting enzyme and angiotensin II type 1 receptor, as well as Wnt1, ß-catenin and downstream target genes, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in adenine-induced rats, which was verified in AngII-induced HK-2 and NRK-49F cells. Similarly, our results further indicated that treatment with rhein isolated from SKI attenuated renal function decline and epithelial-to-mesenchymal transition and repressed RAS activation and the hyperactive Wnt/ß-catenin signalling pathway in both adenine-induced rats and AngII-induced HK-2 and NRK-49F cells. This study first revealed that SKI repressed epithelial-to-mesenchymal transition by synchronously targeting multiple RAS elements by blocking the hyperactive Wnt/ß-catenin signalling pathway.

17.
Front Pharmacol ; 13: 907108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694252

RESUMO

Membranous nephropathy (MN) is the most common cause of nephrotic syndrome among adults, which is the leading glomerular disease that recurs after kidney transplantation. Treatment for MN remained controversial and challenging, partly owing to absence of sensitive and specific biomarkers and effective therapy for prediction and diagnosis of disease activity. MN starts with the formation and deposition of circulating immune complexes on the outer area in the glomerular basement membrane, leading to complement activation. The identification of autoantibodies against the phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing protein 7A (THSD7A) antigens illuminated a distinct pathophysiological rationale for MN treatments. Nowadays, detection of serum anti-PLA2R antibodies and deposited glomerular PLA2R antigen can be routinely applied to MN. Anti-PLA2R antibodies exhibited much high specificity and sensitivity. Measurement of PLA2R in immune complex deposition allows for the diagnosis of PLA2R-associated MN in patients with renal biopsies. In the review, we critically summarized newer diagnosis biomarkers including PLA2R and THSD7A tests and novel promising therapies by using traditional Chinese medicines such as Astragalus membranaceus, Tripterygium wilfordii, and Astragaloside IV for the treatment of MN patients. We also described unresolved questions and future challenges to reveal the diagnosis and treatments of MN. These unprecedented breakthroughs were quickly translated to clinical diagnosis and management. Considerable advances of detection methods played a critical role in diagnosis and monitoring of treatment.

18.
Ageing Res Rev ; 79: 101662, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688331

RESUMO

Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-ß signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.


Assuntos
Envelhecimento , Receptores de Hidrocarboneto Arílico , Envelhecimento/patologia , Fibrose/patologia , Humanos , Rim/patologia , Fígado/patologia
19.
Acta Pharmacol Sin ; 43(11): 2929-2945, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35577910

RESUMO

Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-ß-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/genética , Fibrose , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Obstrução Ureteral/complicações , RNA Mensageiro
20.
Metabolites ; 12(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448468

RESUMO

Blood pressure is one of the most basic health screenings and it has a complex relationship with chronic kidney disease (CKD). Controlling blood pressure for CKD patients is crucial for curbing kidney function decline and reducing the risk of cardiovascular disease. Two independent CKD cohorts, including matched controls (discovery n = 824; validation n = 552), were recruited. High-throughput metabolomics was conducted with the patients' serum samples using mass spectrometry. After controlling for CKD severity and other clinical hypertension risk factors, we identified ten metabolites that have significant associations with blood pressure. The quantitative importance of these metabolites was verified in a fully connected neural network model. Of the ten metabolites, seven have not previously been associated with blood pressure. The metabolites that had the strongest positive association with blood pressure were aspartylglycosamine (p = 4.58 × 10-5), fructose-1,6-diphosphate (p = 1.19 × 10-4) and N-Acetylserine (p = 3.27 × 10-4). Three metabolites that were negatively associated with blood pressure (phosphocreatine, p = 6.39 × 10-3; dodecanedioic acid, p = 0.01; phosphate, p = 0.04) have been reported previously to have beneficial effects on hypertension. These results suggest that intake of metabolites as supplements may help to control blood pressure in CKD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA