Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39039390

RESUMO

A left ventricular assist device (LVAD) supports hemodynamics in heart failure patients. To deepen the understanding of hemodynamic changes and the movement of thrombi in the aorta, we examined three distinct LVAD blood flow rates across two implantation sites using the theory of computational fluid dynamics. Our findings revealed the complex dynamics of blood flow during cardiac systole under various scenarios. We also analyzed thrombi residence time and flow probabilities into aortic branches. Simulation results indicate that thrombi distribution in the aorta is significantly influenced by the location of the LVAD outflow graft and the flow rate. When the LVAD outflow graft is implanted into the ascending aorta, higher flow rates may reduce the risk of cerebral thrombosis. However, lower flow rates may reduce the risk of cerebral thrombosis while it is implanted into the descending aorta. The study may offer valuable insights into the LVAD implantation about the risk of cerebrovascular embolism.

2.
Nanoscale ; 16(13): 6748-6760, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38497195

RESUMO

Compounding of suitable fillers with PEO-based polymers is the key to forming high-performance electrolytes with robust network structures and homogeneous Li+-transport channels. In this work, we innovatively and efficiently prepared Al2O3 nanofibers and deposited an aqueous dispersion of Al2O3 into a membrane via vacuum filtration to construct a nanofiber membrane with a three-dimensional (3D) network structure as the backbone of a PEO-based solid-state electrolyte. The supporting effect of the nanofiber network structure improved the mechanical properties of the reinforced composite solid-state electrolyte and its ability to inhibit the growth of Li dendrites. Meanwhile, interconnected nanofibers in the PEO-based electrolyte and the strong Lewis acid-base interactions between the chemical groups on the surface of the inorganic filler and the ionic species in the PEO matrix provided facilitated pathways for Li+ transport and regulated the uniform deposition of Li+. Moreover, the interaction between Al2O3 and lithium salts as well as the PEO polymer increased free Li+ concentration and maintained its stable electrochemical properties. Hence, assembled Li/Li symmetric cells achieved a cycle life of more than 2000 h. LFP/Li and NMC811/Li cells provided high discharge specific capacities of up to 146.9 mA h g-1 (0.5C and 50 °C) and 166.9 mA h g-1 (0.25C and 50 °C), respectively. The prepared flexible self-supporting 3D nanofiber network structure construction can provide a simple and efficient new strategy for the exploitation of high-performance solid-state electrolytes.

3.
Small ; 20(27): e2308058, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38286621

RESUMO

The unsatisfactory lithium-ion conductivity (σ) and limited mechanical strength of polymer solid electrolytes hinder their wide applications in solid-state lithium metal batteries (SSLMBs). Here, a thin piezoelectric polymer solid electrolyte integrating electromechanical coupling and ferroelectric polarization effects has been designed and prepared to achieve long-term stable cycling of SSLMBs. The ferroelectric Bi4Ti3O12 nanoparticle (BIT NPs) loaded poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric nanofibers (B-P NFs) membranes are introduced into the poly(ethylene oxide) (PEO) matrix, endowing the composite electrolyte with unique polarization and piezoelectric effects. The piezoelectric nanofiber membrane with a 3D network structure not only promotes the dissociation of lithium (Li) salts through the polarization effect but also cleverly utilizes the coupling effect of a mechanical stress-local electric field to achieve dynamic regulation of the Li electroplating process. Through the corresponding experimental tests and density functional theory calculations, the intrinsic mechanism of piezoelectric electrolytes improving σ and suppressing Li dendrites is fully revealed. The obtained piezoelectric electrolyte has achieved stable cycling of LiFePO4 batteries over 2000 cycles and has also shown good practical application potential in flexible pouch batteries.

4.
Nat Commun ; 14(1): 7916, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036537

RESUMO

MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.


Assuntos
Músculo Esquelético , Obesidade , Humanos , Masculino , Animais , Camundongos , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Homeostase , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo
5.
Membranes (Basel) ; 13(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887979

RESUMO

Recently, the multi-level interwoven structured micro/nano fiber membranes with coarse and fine overlaps have attracted lots of attention due to their advantages of high surface roughness, high porosity, good mechanical strength, etc., but their simple and direct preparation methods still need to be developed. Herein, the multi-level structured micro/nano fiber membranes were prepared novelly and directly by a one-step electrospinning technique based on the principle of micro-phase separation caused by polymer incompatibility using polystyrene (PS) and polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP) as raw materials. It was found that different spinning fluid parameters and various spinning process parameters will have a significant impact on its morphology and structures. Under certain conditions (the concentration of spinning solution is 18 wt%, the mass ratio of PS to PVDF-HFP is 1:7, the spinning voltage is 30 kV, and the spinning receiving distance is 18 cm), the PS/PVDF-HFP membrane with optimal multi-level structured micro/nano fiber membranes could be obtained, which present an average pore size of 4.38 ± 0.10 µm, a porosity of 78.9 ± 3.5%, and a water contact angle of 145.84 ± 1.70°. The formation mechanism of micro/nano fiber interwoven structures was proposed through conductivity and viscosity tests. In addition, it was initially used as a separation membrane material in membrane distillation, and its performance was preliminarily explored. This paper provides a theoretical and experimental basis for the research and development of an efficient and feasible method for the preparation of multi-level micro/nano fiber membranes.

6.
Leg Med (Tokyo) ; 65: 102312, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603982

RESUMO

More accurate identification of the types of body fluids left at a crime scene is indispensable for improving the judicial chain of evidence. MicroRNAs (miRNAs) have become recognized as ideal molecular markers for the identification of body fluids in forensic science due to their short length, stability and high tissue specificity. In this study, small RNA sequencing was performed on 20 samples of five types of body fluids (peripheral blood, menstrual blood, saliva, semen, and vaginal secretions) with the BGISEQ-500 sequencing platform, and the specific miRNA markers of saliva and vaginal secretions were screened by bioinformatics methods, including differential expression analysis and significant enrichment analysis. Through RT-qPCR validation of 169 samples, we confirmed that miR-223-3p can be used as a saliva-specific marker. In addition, we considered miR-223-3p in combination with four other miRNA molecules (miR-451a, miR-891a-5p, miR-144-5p, miR-203a-3p) that had been previously screened and verified in our laboratory, and seven body fluid prediction models based on machine learning algorithms were constructed and verified. The results showed that a kernel density estimation (KDE) model based on the five miRNA markers for body fluid identification could achieve 100% accuracy in the samples tested in the present study.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Humanos , Saliva , Genética Forense/métodos , MicroRNAs/análise , Líquidos Corporais/química , Biomarcadores/metabolismo
7.
J Thorac Dis ; 15(7): 3953-3964, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37559613

RESUMO

Background: The clinical effectiveness and efficiency of a steerable sheath for radiofrequency catheter ablation (RFCA) in Chinese patients with atrial fibrillation (AF) needs to be compared with a fixed curve sheath to optimize RFCA procedure. Methods: This retrospective study included adult AF patients with their first RFCA that was conducted by the same electrophysiologist using a steerable sheath (VIZIGO, Biosense Webster, Inc.) or a fixed curve sheath (NaviEase, Synaptic Medical) in a Chinese tertiary care hospital from January to November 2021. The medical records kept at the hospital were the source of study data that included patient baseline characteristics and outcome measures for the clinical effectiveness and efficiency of RFCA procedure. Multivariate generalized linear regression analyses were performed to explore the impact of sheath type on clinical effectiveness and efficiency after adjustment. Results: Fourteen patients using steerable sheath and 34 patients using fixed curve sheath for RFCA were included in the data analysis. Most of patient baseline characteristics associated with the two study groups were comparable except that the steerable sheath group had significantly higher left atrium diameter (41.9±6.5 vs. 38.1±3.9 mm, P=0.017) and larger left atrium volume (150.4±29.5 vs. 126.8±27.5 mL, P=0.017) than the fixed curve sheath group. Using steerable sheath was associated with significantly shorter total pulmonary vein isolation (PVI) fluoroscopy time and post-surgery hospital length of stay (LOS) than using fixed curve sheath in both unadjusted comparisons (PVI fluoroscopy time: 1.3±1.5 vs. 4.0±3.9 min, P=0.004; post-surgery LOS: 2.1±0.7 vs. 2.9±1.5 days, P=0.034) and multivariate generalized regression analyses (PVI fluoroscopy time: coefficient =-0.859, P=0.014; post-surgery LOS: coefficient =-0.303, P=0.018). Conclusions: Compared to fixed curve sheath, steerable sheath used for RFAC could have the potential to shorten the PVI fluoroscopy time and reduce post-surgery LOS in a Chinese real-world hospital setting. Future real-world studies with large sample size are needed to confirm our study findings.

8.
J Colloid Interface Sci ; 647: 163-173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247480

RESUMO

Porous carbon-based electrocatalysts for cathodes in zinc-air batteries (ZABs) are limited by their low catalytic activity and poor electronic conductivity, making it difficult for them to be quickly commercialized. To solve these problems of ZABs, copper nanodot-embedded N, F co-doped porous carbon nanofibers (CuNDs@NFPCNFs) are prepared to enhance the electronic conductivity and catalytic activity in this study. The CuNDs@NFPCNFs exhibit excellent oxygen reduction reaction (ORR) performance based on experimental and density functional theory (DFT) simulation results. The copper nanodots (CuNDs) and N, F co-doped carbon nanofibers (NFPCNFs) synergistically enhance the electrocatalytic activity. The CuNDs in the NFPCNFs also enhance the electronic conductivity to facilitate electron transfer during the ORR. The open porous structure of the NFPCNFs promotes the fast diffusion of dissolved oxygen and the formation of abundant gas-liquid-solid interfaces, leading to enhanced ORR activity. Finally, the CuNDs@NFPCNFs show excellent ORR performance, maintaining 92.5% of the catalytic activity after a long-term ORR test of 20000 s. The CuNDs@NFPCNFs also demonstrate super stable charge-discharge cycling for over 400 h, a high specific capacity of 771.3 mAh g-1 and an excellent power density of 204.9 mW cm-2 as a cathode electrode in ZABs. This work is expected to provide reference and guidance for research on the mechanism of action of metal nanodot-enhanced carbon materials for ORR electrocatalyst design.

9.
Forensic Sci Int Genet ; 63: 102827, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642061

RESUMO

MicroRNA (miRNA)-based methods for body fluid identification are promising tools in the practice of forensic science. The selection of appropriate endogenous reference genes as normalizers for the relative quantification of miRNA expression levels using quantitative reverse transcription-polymerase chain reaction (RTqPCR) is essential to avoid errors and improve the comparability of miRNA expression level data among different body fluids. In this study, small RNAs were isolated from individual donations of five forensically relevant body fluids (peripheral blood, menstrual blood, saliva, semen and vaginal secretions). Thirty-seven samples were subjected to high-throughput miRNA sequencing. By combining our results with those obtained through a literature investigation, 28 candidate RNAs were identified. Following RTqPCR validation, the candidate RNAs were preliminarily evaluated in 15 samples to exclude miRNAs with low expression and high variation. Then, the expression levels of 10 relatively stable candidate reference RNAs in 100 samples were determined and further analysed using four commonly employed programs (geNorm, NormFinder, BestKeeper and ΔCq). According to the comprehensive stability rankings of the four algorithms, miR-320a-3p was validated as the most stable endogenous reference gene among the five forensically relevant body fluids, followed by miR-484, SNORD43, miR-320c and RNU6b. Moreover, the combined application of miR-320a-3p with RNU6b could increase the normalization effect. In addition, a total of 56 mock samples placed outdoors and indoors for different times were prepared to further evaluate the stability of candidate reference RNAs, and miR-320a-3p remained the preferred reference gene. Furthermore, the relative expression levels of publicly accepted body fluid-specific miRNAs were determined in 30 samples to verify the practicality and effectiveness of the reference genes. Our results revealed a set of alternative reference genes and could promote the development and application of miRNA-based body fluid identification by determining optional reference genes for strict normalization.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Humanos , MicroRNAs/metabolismo , Líquidos Corporais/química , Saliva/química , Sêmen/química , Medicina Legal , Reação em Cadeia da Polimerase em Tempo Real , Perfilação da Expressão Gênica
10.
ACS Appl Mater Interfaces ; 14(49): 55039-55050, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36445840

RESUMO

The surface charge density enhancement by incorporating conductive paths into organic/inorganic piezoelectric composites is considered to be an effective way to achieve high-performance piezoelectric nanogenerators (PENGs). However, it is challenging to boost the charge density of aligned piezoelectric nanofibers due to the difficulty in efficiently building well-distributed conductive paths in their dense structure. In this work, a charge boosting strategy was proposed for enhancing the surface charge density of aligned piezoelectric nanofibers, that is, synchronously preparing piezoelectric/conductive hybrid nanofibers to realize the effective conductive paths for transferring the underlying charges to the surface of the PDMS/BaTiO3 composites. To this end, antimony-doped tin oxide (ATO) conductive nanofibers and barium titanate (BaTiO3) piezoelectric nanofibers with the same preparation conditions were selected and synchronously prepared by the polymer template electrospinning technology, followed by the calcination process. Benefiting from the well-distributed conductive paths for transferring the charges, the open-circuit voltage and short-circuit current of a PENG with 12 wt% ATO in hybrid nanofibers reached 46 V and 14.5 µA (30 kPa pressure), respectively, which were much higher than the pristine BaTiO3-based PENG. The high piezoelectric performance of the developed PENGs guaranteed their great potential applications in powering wearable microelectronics and monitoring human activity. This charge boosting strategy via the piezoelectric/conductive hybrid nanofibers may inspire the further development of high-performance energy harvesting technology.

11.
iScience ; 25(10): 105151, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185364

RESUMO

E3 ubiquitin ligase Cbl-b is involved in the maintenance of a balance between immunity and tolerance. Mice lacking Cbl-b are highly susceptible to experimental autoimmune encephalomyelitis (EAE), a Th17-mediated autoimmune disease. However, how Cbl-b regulates Th17 cell responses remains unclear. In this study, utilizing adoptive transfer and cell type-specific Cblb knockout strains, we show that Cbl-b expression in macrophages, but not T cells or dendritic cells (DCs), restrains the generation of pathogenic Th17 cells and the development of EAE. Cbl-b inhibits IL-6 production by macrophages that is induced by signaling from CARD9-dependent C-type lectin receptor (CLR) pathways, which directs T cells to generate pathogenic Th17 cells. Therefore, our data unveil a previously unappreciated function for Cbl-b in the regulation of pathogenic Th17 responses.

12.
J Oncol ; 2022: 3290479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157240

RESUMO

Papillary thyroid cancer (PTC), accounting for more than 80 percent of all cases of thyroid cancer, is a form of a cancerous tumor that has a very favorable prognosis. However, patients diagnosed with PTC who are already in an advanced state have a dismal outlook. This study aimed to establish the diagnostic relevance of PRR15 expression in PTC patients as well as its levels in PTC samples and its connection with immune infiltrates. The TCGA and GEO datasets were combed through to obtain information on PTC patients. The "Limma" program was used to screen for differentially expressed mRNAs (DEMs), and the results were displayed using volcano plots and heat maps. The Wilcoxon test was used to examine the level of PRR15 expression in PTC patients in comparison with that of normal tissues. To study the connection between the immune infiltration level and PRR15 expression in PTC, the single-sample sequence set enrichment analysis (ssGSEA) from the R package was utilized. The expression of PRR15 was analyzed with RT-PCR in PTC cells and normal cells. In order to evaluate the diagnostic significance of PRR15 expression, ROC assays were carried out. Experiments using CCK-8 were carried out to investigate the impact that PRR15 knockdown could have on the proliferation of PTC cells. In this study, 17 overlapped DEMs between PTC specimens and normal specimens were identified, including MPPED2, IPCEF1, SLC4A4, PKHD1L1, DIO1, CRABP1, TPO, TFF3, SPX, TCEAL2, ZCCHC12, SYTL5, PRR15, CHI3L1, SERPINA1, GABRB2, and CITED1. Our attention focused on PRR15 which was highly expressed in PTC specimens as compared with nontumor specimens. PRR15 had an AUC value of 0.926 (95% CI 0.902-0.950) for PTC based on TCGA datasets. Pan-cancer assays suggested PRR15 as an oncogenic gene in many types of tumors. Moreover, we found that PRR15 expression was positively correlated with eosinophils, NK cells, NK CD56bright cells, IDC, macrophages, DC, mast cells, and Th1 cells. Further investigations with CCK-8 demonstrated that inhibiting PRR15 resulted in a decrease in the proliferation of PTC cells. Overall, PRR15 was confirmed to be a biomarker for PTC patients and a predictor of response to immunotherapy.

14.
J Immunol Res ; 2022: 7599098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310605

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic cancer. Many studies have reported that RIPK4 (receptor interacting serine/threonine kinase 4) displayed a dysregulated level in many types of tumors. However, its expressions and functions in OC were rarely reported. The levels of RIPK4 were detected in OC and nontumor specimens using TCGA and GEO datasets. The prognostic values of RIPK4 in patients were determined using Kaplan-Meier methods and Kaplan-Meier assays. GO assays and KEGG pathway assays were carried out for functional enrichments. CIBERSORT was applied for estimating the fractions of immune cell types. Finally, RIPK4 was validated in pan-cancer. In this study, our group found that RIPK4 exhibited a higher level of RIPK4 in OC specimens than nontumor specimens. Survival studies revealed that patients with high RIPK4 expressions showed a shorter overall survival than those with low RIPK4 expression. Multivariate assays further confirmed that RIPK4 expression was an independent prognostic element for OC. KEGG pathway analysis displayed that the dysregulated genes in specimens with high RIPK4 expressions were enriched in focal adhesion, proteoglycans in cancer, central carbon metabolism in cancer, and insulin secretion. Correlation analyses showed that several TICs were positively correlated with RIPK4 expression. The pan-cancer validation results showed that RIPK4 was associated with survival in five tumors. Overall, our findings suggested RIPK4 as a prognostic marker in OC.


Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Biomarcadores , Carcinoma Epitelial do Ovário , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Prognóstico
15.
Small ; 18(14): e2107250, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166038

RESUMO

Particulate matter (PM) pollution has become a serious environmental concern. Nanofibrous filters are widely reported to remove PM from polluted air. Herein, efficient and lightweight PM air filters are presented using airflow synergistic needleless electrospinning composed of auxiliary fields such as an airflow field and a secondary inductive electric field. Compared to needleless electrospinning with other spinnerets, it significantly improves productivity, fiber diameter, and porosity of fibrous air filters. The instant noodle-like nanofiber structure can also be controlled by adjusting the airflow velocity. These air filters exhibit high (2.5 µm particulate matter) PM2.5 removal efficiency (99.9%) and high (0.3 µm particulate matter) PM0.3 removal efficiency (99.1%), low pressure drop (56 Pa for PM2.5 and 78 Pa for PM0.3 ), and large dust holding capacitance (the maximum value is 168 g m-2 for PM2.5 , while 102 g m-2 for PM0.3 ). Meanwhile, the proposed PM filters are also tested suitable and stable to other polluted air filtrations such as cigarette smoke and sawdust. The large-scale synthesis of such an attractive nanofiber structure presents the great potential of high-performance filtration/separation materials.


Assuntos
Filtros de Ar , Nanofibras , Filtração , Material Particulado , Porosidade
16.
Small ; 18(8): e2104469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35015928

RESUMO

Lithium-sulfur batteries (LSBs) are attracting much attention due to their high theoretical energy density and are considered to be the predominant competitors for next-generation energy storage systems. The practical commercial application of LSBs is mainly hindered by the severe "shuttle effect" of the lithium polysulfides (LiPSs) and the serious damage of lithium dendrites. Various carbon materials with different characteristics have played an important role in overcoming the above-mentioned problems. Carbon spheres (CSs) are extensively explored to enhance the performance of LSBs owing to their superior structures. The review presents the state-of-the-art advances of CSs for advanced high-energy LSBs, including their preparation strategies and applications in inhibiting the "shuttle effect" of the LiPSs and protecting lithium anodes. The unique restriction effect of CSs on LiPSs is explained from three working mechanisms: physical confinement, chemical interaction, and catalytic conversion. From the perspective of interfacial engineering and 3D structure designing, the protective effect of CSs on the lithium anode is also analyzed. Not only does this review article contain a summary of CSs in LSBs, but also future directions and prospects are discussed. The systematic discussions and suggested directions can enlighten thoughts in the reasonable design of CSs for LSBs in near future.


Assuntos
Carbono , Lítio , Carbono/química , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Enxofre
17.
Fa Yi Xue Za Zhi ; 38(6): 719-725, 2022 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36914387

RESUMO

OBJECTIVES: To establish a system for simultaneous detection of miR-888 and miR-891a by droplet digital PCR (ddPCR), and to evaluate its application value in semen identification. METHODS: The hydrolysis probes with different fluorescence modified reporter groups were designed to realize the detection of miR-888 and miR-891a by duplex ddPCR. A total of 75 samples of 5 body fluids (including peripheral blood, menstrual blood, semen, saliva and vaginal secretion) were detected. The difference analysis was conducted by Mann-Whitney U test. The semen differentiation ability of miR-888 and miR-891a was evaluated by ROC curve analysis and the optimal cut-off value was obtained. RESULTS: There was no significant difference between the dual-plex assay and the single assay in this system. The detection sensitivity was up to 0.1 ng total RNA, and the intra- and inter-batch coefficients of variation were less than 15%. The expression levels of miR-888 and miR-891a detected by duplex ddPCR in semen were both higher than those in other body fluids. ROC curve analysis showed that the AUC of miR-888 was 0.976, the optimal cut-off value was 2.250 copies/µL, and the discrimination accuracy was 97.33%; the AUC of miR-891a was 1.000, the optimal cut-off value was 1.100 copies/µL, and the discrimination accuracy was 100%. CONCLUSIONS: In this study, a method for detection of miR-888 and miR-891a by duplex ddPCR was successfully established. The system has good stability and repeatability and can be used for semen identification. Both miR-888 and miR-891a have high ability to identify semen, and the discrimination accuracy of miR-891a is higher.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Humanos , Líquidos Corporais/química , MicroRNAs/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saliva/química , Sêmen/química , Masculino
18.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1684-1693, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36604148

RESUMO

Long noncoding RNAs (lncRNAs) are known to have profound functions in regulating cell fate specification, cell differentiation, organogenesis, and disease, but their physiological roles in controlling cellular metabolism and whole-body metabolic homeostasis are less well understood. We previously identified a skeletal muscle-specific long intergenic noncoding RNA (linc-RNA) activator of myogenesis, Linc-RAM, which enhances muscle cell differentiation during development and regeneration. Here, we report that Linc-RAM exerts a physiological function in regulating skeletal muscle metabolism and the basal metabolic rate to maintain whole-body metabolic homeostasis. We first demonstrate that Linc-RAM is preferentially expressed in type-II enriched glycolytic myofibers, in which its level is more than 60-fold higher compared to that in differentiated myotubes. Consistently, genetic deletion of the Linc-RAM gene in mice increases the expression levels of genes encoding oxidative fiber versions of myosin heavy chains and decreases those of genes encoding rate-limiting enzymes for glycolytic metabolism. Physiologically, Linc-RAM-knockout mice exhibit a higher basal metabolic rate, elevated insulin sensitivity and reduced fat deposition compared to their wild-type littermates. Together, our findings indicate that Linc-RAM is a metabolic regulator of skeletal muscle metabolism and may represent a potential pharmaceutical target for preventing and/or treating metabolic diseases, including obesity.


Assuntos
Fibras Musculares Esqueléticas , RNA Longo não Codificante , Animais , Camundongos , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Homeostase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Nanoscale Adv ; 3(4): 1136-1147, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133294

RESUMO

The mounting requirements for electric apparatus and vehicles stimulate the rapid progress of energy storage systems. Lithium (Li) metal is regarded as one of the most prospective anodes for high-performance cells. However, the uneven dendrite growth is one of the primary conundrums that hampers the use of the Li metal anode in rechargeable Li batteries. Achieving even Li deposition is crucial to solve this concern. In this study, a stable interlayer based on electrospun flexible MnO nanoparticle/nitrogen (N)-doped (polyimide) PI-based porous carbon nanofiber (MnO-PCNF) films was effectively prepared via electrospinning and in situ growth of MnO to reduce the growth of Li dendrites. It is revealed that the attraction of implanted MnO towards Li, the lithiophilic nature of N dopants and the capillary force of porous architectures are beneficial to the preeminent Li wettability of the MnO-PCNF interlayer. Furthermore, the wettable, stable and conductive structure of the MnO-PCNF interlayer can be retained well, offering rapid charge transfer to Li redox reactions, reduced local current density during the cycling process and homogeneous distribution of deposited Li. Consequently, anodes with MnO-PCNF interlayers can relieve the volume change and inhibit the growth of Li dendrites, demonstrating a remarkable lifetime for lithium metal cells at high current.

20.
Forensic Sci Int Genet ; 48: 102337, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32693370

RESUMO

Peripheral blood, menstrual blood, semen, saliva and vaginal secretions are the five most common body fluids found at crime scenes, and the identification of these five body fluids is of great significance to the reconstruction of a crime scene and resolution of the case. However, accurate identification of these five body fluids is still a challenge. To address this problem, a mathematical model for differentiating five types of forensic body fluids based on the differential expression characteristics of multiple miRNAs in five body fluids (peripheral blood, menstrual blood, semen, saliva and vaginal secretions) was developed. A total of 350 forensic body fluids (70 of each type) were collected and tested, and relative expression of 10 miRNAs (miR-451a, miR-205-5p, miR-203-3p, miR-214-3p, miR-144-3p, miR-144-5p, miR-654-5p, miR-888-5p, miR-891a-5p, miR-124a-3p) in all samples was detected by SYBR Green real-time qPCR. Three hundred samples (60 samples of each body fluid) were used as the training set to screen meaningful identification markers by stepwise discriminant analysis, and a discriminant function was established. Fifty samples (10 samples of each body fluid) were used as a validation set to examine the accuracy of the model, and 25 samples (the types of samples were unknown to the experimenter) were used for a blind test. Except for miR-144-3p, the other miRNAs were selected to construct discriminant analysis models. The self-validation accuracy of the model was 99.7 %, cross-validation accuracy was 99.3 %, accuracy of the identification validation set was 100 %, and accuracy of the blind test result was 100 %. This study provides a reliable and accurate identification strategy for five common body fluids (peripheral blood, menstrual blood, semen, saliva, and vaginal secretions) in forensic medicine.


Assuntos
Sangue/metabolismo , Muco do Colo Uterino/química , MicroRNAs/metabolismo , Saliva/metabolismo , Sêmen/metabolismo , Adulto , Biomarcadores/metabolismo , Análise Discriminante , Feminino , Genética Forense/métodos , Humanos , Masculino , Menstruação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA