Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell Metab ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39413790

RESUMO

Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.

2.
Small ; : e2405165, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466940

RESUMO

Fluorescent RNAs (FRs), which are RNA aptamers that bind and activate their cognate small fluorogenic dyes, have provided a particularly useful approach for imaging RNAs in live cells. Although the color palette of FRs is greatly expanded, a bright and stable cyan FR with good biocompatibility and biorthogonality with currently available FRs remains desirable but is not yet developed. Herein, the development of Myosotis is described, an RNA aptamer that emits bright cyan fluorescence upon binding a novel GFP chromophore-like fluorophore called DBT. Myosotis has a nanomolar affinity for DBT and shows a weak dependence on magnesium for folding. Further studies reveal that the Myosotis-DBT complex has a long fluorescence lifetime, good photostability, and enhance cellular brightness. It is further shown that Myosotis-DBT is biorthogonal to Pepper and Clivia FRs, allowing multiplex fluorescence imaging of RNA in live bacteria. Myosotis can also use to image mRNA in live bacteria, revealing potential coupling between mRNA translation and stability. It is believed that this cyan FR will be a useful tool for studying the functionality and mechanism of RNA underlying diverse biological processes.

3.
Biochem Biophys Res Commun ; 734: 150449, 2024 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-39096623

RESUMO

Lactate plays a crucial role in energy metabolism and greatly impacts protein activities, exerting diverse physiological and pathological effects. Therefore, convenient lactate assays for tracking spatiotemporal dynamics in living cells are desirable. In this paper, we engineered and optimized a red fluorescent protein sensor for l-lactate named FiLa-Red. This indicator exhibited a maximal fluorescence change of 730 % and an apparent dissociation constant (Kd) of approximately 460 µM. By utilizing FiLa-Red and other sensors, we monitored energy metabolism in a multiplex manner by simultaneously tracking lactate and NAD+/NADH abundance in the cytoplasm, nucleus, and mitochondria. The FiLa-Red sensor is expected to be a useful tool for performing metabolic analysis in vitro, in living cells and in vivo.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Proteínas Luminescentes , Proteína Vermelha Fluorescente , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ácido Láctico/metabolismo , Humanos , Técnicas Biossensoriais/métodos , NAD/metabolismo , Células HeLa , Células HEK293 , Mitocôndrias/metabolismo , Mitocôndrias/genética , Metabolismo Energético
4.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142135

RESUMO

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

5.
Adv Healthc Mater ; : e2401869, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180276

RESUMO

Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.

6.
Acta Pharmacol Sin ; 45(10): 2199-2211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38902503

RESUMO

Identification of compounds to modulate NADPH metabolism is crucial for understanding complex diseases and developing effective therapies. However, the complex nature of NADPH metabolism poses challenges in achieving this goal. In this study, we proposed a novel strategy named NADPHnet to predict key proteins and drug-target interactions related to NADPH metabolism via network-based methods. Different from traditional approaches only focusing on one single protein, NADPHnet could screen compounds to modulate NADPH metabolism from a comprehensive view. Specifically, NADPHnet identified key proteins involved in regulation of NADPH metabolism using network-based methods, and characterized the impact of natural products on NADPH metabolism using a combined score, NADPH-Score. NADPHnet demonstrated a broader applicability domain and improved accuracy in the external validation set. This approach was further employed along with molecular docking to identify 27 compounds from a natural product library, 6 of which exhibited concentration-dependent changes of cellular NADPH level within 100 µM, with Oxyberberine showing promising effects even at 10 µM. Mechanistic and pathological analyses of Oxyberberine suggest potential novel mechanisms to affect diabetes and cancer. Overall, NADPHnet offers a promising method for prediction of NADPH metabolism modulation and advances drug discovery for complex diseases.


Assuntos
Simulação de Acoplamento Molecular , NADP , NADP/metabolismo , Humanos , Descoberta de Drogas/métodos , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química
8.
Nat Chem Biol ; 20(10): 1272-1281, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38783134

RESUMO

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.


Assuntos
Corantes Fluorescentes , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Humanos , Corantes Fluorescentes/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Microscopia de Fluorescência/métodos
9.
Nat Struct Mol Biol ; 31(9): 1413-1425, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38769389

RESUMO

NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Mitocôndrias , Oxirredução , Pirimidinas , Interferência de RNA , Humanos , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Mitocôndrias/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Colina/metabolismo , NAD/metabolismo , NAD/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Serina/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética
11.
Adv Mater ; 36(21): e2311459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38346345

RESUMO

Hair loss is characterized by the inability of hair follicles (HFs) to enter the telogen-anagen transition (TAT) and lack of de novo HFs. Current pharmaceutical therapies and surgical modalities have been largely limited to regulating hair regrowth efficiently without side effects and lacking treatment compliance. Here, this work proposes a materiobiomodulation therapy (MBMT), wherein polydopamine (PDA) nanoparticles with redox activity can be modulated to have a stoichiometric ROS (H2O2) donating ability. These nanoparticles can intracellularly deliver ROS with high-efficiency via the clathrin-dependent endocytosis process. Utilizing homozygote transgenic HyPerion (a genetically-encoded H2O2 biosensor) mice, this work also achieves in vivo dynamic monitoring of intracellular H2O2 elevation induced by ROS donators. Subcutaneous administration with ROS donators results in rapid onset of TAT and subsequent hair regrowth with a specific ROS "hormesis effect." Mechanistically, ROS activate ß-catenin-dependent Wnt signaling, upregulating hair follicle stem cell expression. This work further develops a microneedles patch for transdermal ROS delivery, demonstrating long-term, low-dose ROS release. Unlike photobiomodulation therapy (PBMT), MBMT requires no external stimuli, providing a convenient and efficient approach for clinical hair loss treatment. This material-HF communication implicates new avenues in HF-related diseases, achieving targeted ROS delivery with minimal side effects.


Assuntos
Folículo Piloso , Indóis , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Animais , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Camundongos , Indóis/química , Nanopartículas/química , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Alopecia/terapia , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Humanos , Camundongos Transgênicos
12.
Nat Protoc ; 19(5): 1311-1347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38307980

RESUMO

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Animais , Humanos , Camundongos , Técnicas Biossensoriais/métodos , Ácido Láctico/metabolismo , Ácido Láctico/análise
13.
Natl Sci Rev ; 11(2): nwad295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327665

RESUMO

Lactate is present at a high level in the microenvironment of mammalian preimplantation embryos in vivo and in vitro. However, its role in preimplantation development is unclear. Here, we report that lactate is highly enriched in the nuclei of early embryos when major zygotic genome activation (ZGA) occurs in humans and mice. The inhibition of its production and uptake results in developmental arrest at the 2-cell stage, major ZGA failure, and loss of lactate-derived H3K18lac, which could be rescued by the addition of Lac-CoA and recapitulated by overexpression of H3K18R mutation. By profiling the landscape of H3K18lac during mouse preimplantation development, we show that H3K18lac is enriched on the promoter regions of most major ZGA genes and correlates with their expressions. In humans, H3K18lac is also enriched in ZGA markers and temporally concomitant with their expressions. Taken together, we profile the landscapes of H3K18lac in mouse and human preimplantation embryos, and demonstrate the important role for H3K18lac in major ZGA, showing that a conserved metabolic mechanism underlies preimplantation development of mammalian embryos.

14.
Asian J Pharm Sci ; 19(1): 100858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362469

RESUMO

Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.

15.
Nat Commun ; 15(1): 133, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168040

RESUMO

Adipocytes are the primary sites for fatty acid storage, but the synthesis rate of fatty acids is very low. The physiological significance of this phenomenon remains unclear. Here, we show that surplus fatty acid synthesis in adipocytes induces necroptosis and lipodystrophy. Transcriptional activation of FASN elevates fatty acid synthesis, but decreases NADPH level and increases ROS production, which ultimately leads to adipocyte necroptosis. We identify MED20, a subunit of the Mediator complex, as a negative regulator of FASN transcription. Adipocyte-specific male Med20 knockout mice progressively develop lipodystrophy, which is reversed by scavenging ROS. Further, in a murine model of HIV-associated lipodystrophy and a human patient with acquired lipodystrophy, ROS neutralization significantly improves metabolic disorders, indicating a causal role of ROS in disease onset. Our study well explains the low fatty acid synthesis rate in adipocytes, and sheds light on the management of acquired lipodystrophy.


Assuntos
Adipócitos , Lipodistrofia , Masculino , Camundongos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Adipócitos/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Ácidos Graxos/metabolismo , Estresse Oxidativo , Camundongos Knockout
16.
Nat Metab ; 5(11): 1887-1910, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903887

RESUMO

Senescent cells remain metabolically active, but their metabolic landscape and resulting implications remain underexplored. Here, we report upregulation of pyruvate dehydrogenase kinase 4 (PDK4) upon senescence, particularly in some stromal cell lines. Senescent cells display a PDK4-dependent increase in aerobic glycolysis and enhanced lactate production but maintain mitochondrial respiration and redox activity, thus adopting a special form of metabolic reprogramming. Medium from PDK4+ stromal cells promotes the malignancy of recipient cancer cells in vitro, whereas inhibition of PDK4 causes tumor regression in vivo. We find that lactate promotes reactive oxygen species production via NOX1 to drive the senescence-associated secretory phenotype, whereas PDK4 suppression reduces DNA damage severity and restrains the senescence-associated secretory phenotype. In preclinical trials, PDK4 inhibition alleviates physical dysfunction and prevents age-associated frailty. Together, our study confirms the hypercatabolic nature of senescent cells and reveals a metabolic link between cellular senescence, lactate production, and possibly, age-related pathologies, including but not limited to cancer.


Assuntos
Ácido Láctico , Neoplasias , Proteínas Quinases , Regulação para Cima , Senescência Celular
17.
Stress Biol ; 3(1): 17, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676352

RESUMO

Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.

18.
Nat Methods ; 20(10): 1563-1572, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723244

RESUMO

Fluorescent RNAs, aptamers that bind and activate small fluorogenic dyes, have provided a particularly attractive approach to visualizing RNAs in live cells. However, the simultaneous imaging of multiple RNAs remains challenging due to a lack of bright and stable fluorescent RNAs with bio-orthogonality and suitable spectral properties. Here, we develop the Clivias, a series of small, monomeric and stable orange-to-red fluorescent RNAs with large Stokes shifts of up to 108 nm, enabling the simple and robust imaging of RNA with minimal perturbation of the target RNA's localization and functionality. In combination with Pepper fluorescent RNAs, the Clivias enable the single-excitation two-emission dual-color imaging of cellular RNAs and genomic loci. Clivias can also be used to detect RNA-protein interactions by bioluminescent imaging both in live cells and in vivo. We believe that these large Stokes shift fluorescent RNAs will be useful tools for the tracking and quantification of multiple RNAs in diverse biological processes.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , RNA , Microscopia de Fluorescência , Aptâmeros de Nucleotídeos/genética
19.
Int J Pharm ; 644: 123249, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467816

RESUMO

Breast cancer, which requires comprehensive multifunctional treatment strategies, is a major threat to the health of women. To develop multifunctional treatment strategies, we combined photothermal therapy (PTT) with immunotherapy in multifunctional nanoparticles for enhancing the anti-tumor efficacy. Fe3O4 nanoparticles coated with the polydopamine shell modified with polyethylene glycol and cyclic arginine-glycyl-aspartic peptide/anisamide (tNP) for loading the immune adjuvant resiquimod (R848) (R848@tNP) were developed in this research. R848@tNP had a round-like morphology with a mean diameter of 174.7 ± 3.8 nm, the zeta potential of -20.9 ± 0.9 mV, the drug loading rate of 9.2 ± 1.1 %, the encapsulation efficiency of 81.7 ± 3.2 %, high photothermal conversion efficiency and excellent magnetic properties in vitro. Furthermore, this research also explored the anticancer efficacy of nanoparticles against the breast cancer under the near-infrared (NIR) light (808 nm) in vitro and in vivo. R848@tNP-based NIR therapy effectively inhibited the proliferation of breast cancer cells. Moreover, R848@tNP mediated PTT significantly enhanced the maturation of dendritic cells in vitro. Additionally, R848@tNP enhances the anti-tumor effect and evoked an immune response under NIR in vivo. Furthermore, the biosafety of R848@tNP was fully investigated in this study. Collectively, these results clearly demonstrate that R848@tNP, with magnetic resonance imaging characteristics, is a potential therapeutic for breast cancer that combines PTT with the immunotherapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Fototerapia , Imunoterapia
20.
J Cell Physiol ; 238(9): 2039-2049, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37334430

RESUMO

Metabolic programming is deeply intertwined with early embryonic development including zygotic genome activation (ZGA), the polarization of zygotic cells, and cell fate commitment. It is crucial to establish a noninvasive imaging technology that spatiotemporally illuminates the cellular metabolism pathways in embryos to track developmental metabolism in situ. In this study, we used two high-quality genetically encoded fluorescent biosensors, SoNar for NADH/NAD+ and iNap1 for NADPH, to characterize the dynamic regulation of energy metabolism and redox homeostasis during early zygotic cleavage. Our imaging results showed that NADH/NAD+ levels decreased from the early to the late two-cell stage, whereas the levels of the reducing equivalent NADPH increased. Mechanistically, transcriptome profiling suggested that during the two-cell stage, zygotic cells downregulated the expression of genes involved in glucose uptake and glycolysis, and upregulated the expression of genes for pyruvate metabolism in mitochondria and oxidative phosphorylation, with a decline in the expression of two peroxiredoxin genes, Prdx1 and Prdx2. Collectively, with the establishment of in situ metabolic monitoring technology, our study revealed the programming of redox metabolism during ZGA.


Assuntos
NAD , Zigoto , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , NAD/metabolismo , NADP/metabolismo , Oxirredução , Zigoto/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA