Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1340728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515628

RESUMO

In recent years, cell therapy has come to play an important therapeutic role in oral diseases. This paper reviews the active role of mesenchymal stem cells, immune cell sources, and other cells in oral disorders, and presents data supporting the role of cell therapy in oral disorders, including bone and tooth regeneration, oral mucosal disorders, oral soft tissue defects, salivary gland dysfunction, and orthodontic tooth movement. The paper will first review the progress of cell optimization strategies for oral diseases, including the use of hormones in combination with stem cells, gene-modified regulatory cells, epigenetic regulation of cells, drug regulation of cells, cell sheets/aggregates, cell-binding scaffold materials and hydrogels, nanotechnology, and 3D bioprinting of cells. In summary, we will focus on the therapeutic exploration of these different cell sources in oral diseases and the active application of the latest cell optimization strategies.

2.
Tissue Eng Part B Rev ; 30(4): 477-489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38183633

RESUMO

The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.


Assuntos
Osso e Ossos , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Animais , Osso e Ossos/irrigação sanguínea , Osso e Ossos/inervação , Regeneração Óssea/efeitos dos fármacos , Dente/inervação , Angiogênese
3.
J Dent ; 138: 104690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666466

RESUMO

BACKGROUND: Vascularization plays an important role in dental and craniofacial regenerations. Human periodontal ligament stem cells (hPDLSCs) are a promising cell source and, when co-cultured with human umbilical vein endothelial cells (hUVECs), could promote vascularization. The objectives of this study were to develop a novel prevascularized hPDLSC-hUVEC-calcium phosphate construct, and investigate the osteogenic and angiogenic efficacy of this construct with human platelet lysate (hPL) in cranial defects in rats for the first time. METHODS: hPDLSCs and hUVECs were co-cultured on calcium phosphate cement (CPC) scaffolds with hPL. Cell proliferation, angiogenic gene expression, angiogenesis, alkaline phosphatase activity, and cell-synthesized minerals were determined. Bone and vascular regenerations were investigated in rat critical-sized cranial defects in vivo. RESULTS: hPDLSC-hUVEC-CPC-hPL group had 2-fold greater angiogenic expressions and cell-synthesized mineral synthesis than hPDLSC-hUVEC-CPC group (p < 0.05). Microcapillary-like structures were formed on scaffolds in vitro. hPDLSC-hUVEC-CPC-hPL group had more vessels than hPDLSC-hUVEC-CPC group (p < 0.05). In cranial defects in rats, hPDLSC-hUVEC-CPC-hPL group regenerated new bone amount that was 2.1 folds and 4.0 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). New blood vessel density of hPDLSC-hUVEC-CPC-hPL group was 2 folds and 7.9 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). CONCLUSION: The hPL pre-culture method is promising to enhance bone regeneration via prevascularized CPC. Novel hPDLSC-hUVEC-CPC-hPL prevascularized construct increased new bone formation and blood vessel density by 4-8 folds over CPC control. CLINICAL SIGNIFICANCE: Novel hPDLSC-hUVEC-hPL-CPC prevascularized construct greatly increased bone and vascular regeneration in vivo and hence is promising for a wide range of craniofacial applications.


Assuntos
Ligamento Periodontal , Alicerces Teciduais , Humanos , Animais , Ratos , Ratos Nus , Alicerces Teciduais/química , Células-Tronco , Osteogênese , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Crânio/cirurgia , Diferenciação Celular , Células Cultivadas
4.
Dent Mater ; 39(10): 872-885, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574338

RESUMO

OBJECTIVES: Injectable and self-setting calcium phosphate cement scaffold (CPC) capable of encapsulating and delivering stem cells and bioactive agents would be highly beneficial for dental and craniofacial repairs. The objectives of this study were to: (1) develop a novel injectable CPC scaffold encapsulating human periodontal ligament stem cells (hPDLSCs) and metformin (Met) for bone engineering; (2) test bone regeneration efficacy in vitro and in vivo. METHODS: hPDLSCs were encapsulated in degradable alginate fibers, which were then mixed into CPC paste. Five groups were tested: (1) CPC control; (2) CPC + hPDLSC-fibers + 0% Met (CPC + hPDLSCs + 0%Met); (3) CPC + hPDLSC-fibers + 0.1% Met (CPC + hPDLSCs + 0.1%Met); (4) CPC + hPDLSC-fibers + 0.2% Met (CPC + hPDLSCs + 0.2%Met); (5) CPC + hPDLSC-fibers + 0.4% Met (CPC + hPDLSCs + 0.4%Met). The injectability, mechanical properties, metformin release, and hPDLSC osteogenic differentiation and bone mineral were determined in vitro. A rat cranial defect model was used to evaluate new bone formation. RESULTS: The novel construct had good injectability and physical properties. Alginate fibers degraded in 7 days and released hPDLSCs, with 5-fold increase of proliferation (p<0.05). The ALP activity and mineral synthesis of hPDLSCs were increased by Met delivery (p<0.05). Among all groups, CPC+hPDLSCs+ 0.1%Met showed the greatest cell mineralization and osteogenesis, which were 1.5-10 folds those without Met (p<0.05). Compared to CPC control, CPC+hPDLSCs+ 0.1%Met enhanced bone regeneration in rats by 9 folds, and increased vascularization by 3 folds (p<0.05). CONCLUSIONS: The novel injectable construct with hPDLSC and Met encapsulation demonstrated excellent efficacy for bone regeneration and vascularization in vivo in an animal model. CPC+hPDLSCs+ 0.1%Met is highly promising for dental and craniofacial applications.


Assuntos
Metformina , Osteogênese , Ratos , Humanos , Animais , Alicerces Teciduais , Ligamento Periodontal , Metformina/farmacologia , Regeneração Óssea , Células-Tronco , Diferenciação Celular , Fosfatos de Cálcio/farmacologia , Alginatos/farmacologia , Células Cultivadas
5.
Oral Dis ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37448205

RESUMO

OBJECTIVES: Exosomes derived from stem cells are a potential cell-free tool for tissue regeneration with therapeutic potential. However, its application in cementum repair is unclear. This study aimed to investigate the effect of human periodontal ligament stem cell-derived exosomes on the biological activity of cementoblasts, the main effector cells in cementum synthesis. MATERIALS AND METHODS: OCCM-30 cementoblasts were cultured with various human periodontal ligament stem cell-derived exosome concentrations. OCCM-30 cells proliferation, migration, and cementogenic mineralization were examined, along with the gene and protein expression of factors associated with cementoblastic mineralization. RESULTS: Exosomal promoted the migration, proliferation, and mineralization of OCCM-30 cells. The exosome-treated group significantly increased the expression of cementogenic-related genes and proteins. Furthermore, the expression of p-PI3K and p-AKT was enhanced by exosome administration. Treatment with a PI3K/AKT inhibitor markedly attenuated the gene and protein expression of cementoblastic factors, and this effect was partially reversed by exosome administration. CONCLUSIONS: Human periodontal ligament stem cell-derived exosomes can promote the activity of cementoblasts via the PI3K/AKT signaling pathway, providing a scientific basis for promoting the repair process in orthodontically induced inflammatory root resorption.

6.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376255

RESUMO

Smart dental materials are designed to intelligently respond to physiological changes and local environmental stimuli to protect the teeth and promote oral health. Dental plaque, or biofilms, can substantially reduce the local pH, causing demineralization that can then progress to tooth caries. Progress has been made recently in developing smart dental materials that possess antibacterial and remineralizing capabilities in response to local oral pH in order to suppress caries, promote mineralization, and protect tooth structures. This article reviews cutting-edge research on smart dental materials, their novel microstructural and chemical designs, physical and biological properties, antibiofilm and remineralizing capabilities, and mechanisms of being smart to respond to pH. In addition, this article discusses exciting and new developments, methods to further improve the smart materials, and potential clinical applications.

7.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555544

RESUMO

Bone tissue engineering is a promising approach that uses seed-cell-scaffold drug delivery systems to reconstruct bone defects caused by trauma, tumors, or other diseases (e.g., periodontitis). Metformin, a widely used medication for type II diabetes, has the ability to enhance osteogenesis and angiogenesis by promoting cell migration and differentiation. Metformin promotes osteogenic differentiation, mineralization, and bone defect regeneration via activation of the AMP-activated kinase (AMPK) signaling pathway. Bone tissue engineering depends highly on vascular networks for adequate oxygen and nutrition supply. Metformin also enhances vascular differentiation via the AMPK/mechanistic target of the rapamycin kinase (mTOR)/NLR family pyrin domain containing the 3 (NLRP3) inflammasome signaling axis. This is the first review article on the effects of metformin on stem cells and bone tissue engineering. In this paper, we review the cutting-edge research on the effects of metformin on bone tissue engineering. This includes metformin delivery via tissue engineering scaffolds, metformin-induced enhancement of various types of stem cells, and metformin-induced promotion of osteogenesis, angiogenesis, and its regulatory pathways. In addition, the dental, craniofacial, and orthopedic applications of metformin in bone repair and regeneration are also discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Metformina/farmacologia , Metformina/uso terapêutico , Osteogênese , Proteínas Quinases Ativadas por AMP , Alicerces Teciduais , Diferenciação Celular , Regeneração Óssea
8.
Front Bioeng Biotechnol ; 10: 1071472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532583

RESUMO

Objectives: Stem cell-based tissue engineering approaches are promising for bone repair and regeneration. Periodontal ligament stem cells (PDLSCs) are a promising cell source for tissue engineering, especially for maxillofacial bone and periodontal regeneration. Many studies have shown potent results via PDLSCs in bone regeneration. In this review, we describe recent cutting-edge researches on PDLSC-based bone regeneration and periodontal tissue regeneration. Data and sources: An extensive search of the literature for papers related to PDLSCs-based bioactive constructs for bone tissue engineering was made on the databases of PubMed, Medline and Google Scholar. The papers were selected by three independent calibrated reviewers. Results: Multiple types of materials and scaffolds have been combined with PDLSCs, involving xeno genic bone graft, calcium phosphate materials and polymers. These PDLSC-based constructs exhibit the potential for bone and periodontal tissue regeneration. In addition, various osteo inductive agents and strategies have been applied with PDLSCs, including drugs, biologics, gene therapy, physical stimulation, scaffold modification, cell sheets and co-culture. Conclusoin: This review article demonstrates the great potential of PDLSCs-based bioactive constructs as a promising approach for bone and periodontal tissue regeneration.

9.
J Med Microbiol ; 71(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35060850

RESUMO

Background. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is increasingly isolated in paediatric wards, posing a severe threat to these vulnerable populations. This study investigated the clinical features, determinants of carbapenem resistance and clonal relatedness among CRKP in our hospital.Hypothesis. The prevalence of carbapenem-resistant K. pneumoniae in paediatric patients differs from the strains isolated from adult patients in carbapenemase and predominant clones.Aim. To investigate the pattern of carbapenemase and the clonal relationships between carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in Jiangxi Province.Methodology. Forty-five CRKP isolates were consecutively collected from October 2016 to October 2020. Medical records were reviewed to analyse clinical features. Detection of carbapenemase genes was used to determine CRKP resistance mechanisms and clonal relatedness among CRKP was identified through multi-locus sequence typing (MLST).Results. Forty-three (95.6 %) patients developed CRKP infection, and two (4.4 %) were colonized by CRKP in the urinary tract. The overall mortality rate was 13.3 %. In total, 42 (93.3 %) strains were positive for carbapenemase genes, and bla NDM (62.2 %) was the predominant gene. The MLST identified 24 different sequence types (STs) of CRKP, in which ST11 (n=8, 17.8 %) and ST2735 (n=8, 17.8 %) were the most common STs.Conclusion. The pattern of CRKP in paediatric patients reflects evolving changes. The ST2735 K. pneumoniae may present as a dangerous CRKP clone circulating in paediatric patients.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Criança , China/epidemiologia , Farmacorresistência Bacteriana , Hospitais Pediátricos , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Prevalência , beta-Lactamases
10.
J Mech Behav Biomed Mater ; 126: 104990, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871957

RESUMO

OBJECTIVES: The objective of this study was to develop a novel nanostructured resin infiltrant containing nanoparticles of amorphous calcium phosphate (NACP) to treat enamel white spot lesions (WSLs). Physical properties and the therapeutic effect of the new resin infiltrant were investigated for the first time. METHODS: NACP was incorporated into ICON (Icon caries infiltrant, DMG, Germany) with different mass fractions. Cytotoxicity, degree of conversion, surface hardness, calcium (Ca) and phosphorus (P) ions release concentrations were tested. After application to the demineralized enamel samples, the color changes were determined. Surface and cross-sectional hardness were measured, scanning electron microscopy (SEM) images were taken on the cross-section of samples to observe microstructure changes after 14-day pH cycling. RESULTS: Incorporating 10%-30% of NACP did not compromise the biocompatibility and physical properties of the resin infiltrant. ICON + 30% NACP group had long-lasting and high level of Ca and P ion release. After 14-day pH cycling, enamel surface hardness of ICON + 30% NACP group was 1.83 ± 0.21 GPa, significantly higher than the control group (1.32 ± 0.18 GPa) (p < 0.05). ICON + 30NACP group had the highest cross-sectional enamel hardness among all groups (p < 0.05), especially at 50 µm and 100 µm depth. SEM images showed that apparent enamel prism and inter-prism gaps in negative control were masked by mineral deposition in ICON + 30% NACP group. SIGNIFICANCE: The novel ICON+30% NACP infiltrant is promising to inhibit enamel WSLs, protect the enamel and increase its hardness.


Assuntos
Cárie Dentária , Nanopartículas , Fosfatos de Cálcio , Estudos Transversais , Dureza , Humanos
11.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830243

RESUMO

(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6-9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2-3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14-21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.


Assuntos
Fosfatos de Cálcio/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Actinas/genética , Actinas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Cimentos Ósseos/farmacologia , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
12.
Arch Oral Biol ; 132: 105263, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688132

RESUMO

OBJECTIVES: This study aimed to investigate the biological roles and mechanisms of compressive force-stimulated periodontal ligament fibroblasts (PDLFs) on polarization of macrophages DESIGN: PDLFs were stimulated with or without static compressive force, and then conditioned medium, high-molecular weight proteins and low-molecular weight proteins were collected to treat THP-1 macrophages. RT-qPCR and flow cytometric analysis were used to evaluate the polarization of macrophages. Exosomes were isolated by ultracentrifugation method and identified via transmission electron microscopy, western-blot and nano-tracking analysis. The protein level of Yes-Associated Protein (YAP) contained in exosomes was detected by western blot. GW4869 and Verteporfin were used to inhibit exosome secretion and YAP- TEA domain transcription factor (TEAD) interaction respectively. RESULTS: Exosomes were successfully purified from PDLFs and could be efficiently incorporated into THP-1 macrophages. conditioned medium, HMW proteins and exosomes derived from compressive force-treated PDLFs significantly induce M1 polarization of macrophages. While inhibiting exosomes secretion by GW4869 treatment eliminated the inductive effect. YAP target genes, connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61) were upregulated in macrophages when treated with exosomes derived from compressive force-treated PDLFs (F-Exo). YAP level was elevated in the F-Exo. When macrophages were treated with Verteporfin, expression of YAP target genes and M1 polarization were significantly downregulated. CONCLUSION: These results suggested that exosomes derived from compressive force-treated PDLFs promoted the M1 polarization of the THP-1 macrophages. The elevated level of YAP in the exosomes may be a critical factor for this response.


Assuntos
Exossomos , Fibroblastos , Ativação de Macrófagos , Macrófagos , Ligamento Periodontal
13.
J Dent ; 92: 103259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809792

RESUMO

OBJECTIVE: Human periodontal ligament stem cells (hPDLSCs) are promising for periodontal regeneration. However, to date, there has been no report of hPDLSC differentiation into the fibrogenic lineage. There has been no report demonstrating hPDLSC differentiation into all three (osteogenic, fibrogenic and cementogenic fibrogenic) lineages in the same report. The objectives of this study were to harvest hPDLSCs from the periodontal ligaments (PDL) of the extracted human teeth, and use the same vial of hPDLSCs to differentiate into all three (osteogenic, fibrogenic and cementogenic) lineages for the first time. METHODS: hPDLSCs were harvested from PDL tissues of the extracted premolars. The ability of hPDLSCs to form bone, cementum and collagen fibers was tested in culture mediums. Gene expressions were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence, alizarin red (ARS), Xylenol orange, picro sirius red staining (PSRS), alcian blue staining (ABS) and alkaline phosphatase (ALP) staining were evaluated. RESULTS: In osteogenic medium, hPDLSCs had high expressions of osteogenic genes (RUNX2, ALP, OPN and COL1) at 14 and 21 days (15-20 folds of that of control), and produced mineral nodules and ALP activity (5 and 10 folds those of the control). hPDLSCs in fibrogenic medium expressed high levels of PDL fibrogenic genes (COL1, COL3, FSP-1, PLAP-1 and Elastin) at 28 days (20-70 folds of control). They were stained strongly with F-actin and fibronection, and secreted PDL collagen fibers (5 folds of control). hPDLSCs in cementogenic medium showed high expressions of cementum genes (CAP, CEMP1 and BSP) at 21 days (10-15 folds of control) and synthesized mineralized cementum (50 folds via ABS, and 40 folds via ALP staining, compared to those of control). CONCLUSIONS: hPDLSCs differentiated into bone-, fiber- and cementum-forming cells, with potential for regeneration of periodontium to form the bone-PDL-cementum complex.


Assuntos
Cementogênese , Osteogênese , Ligamento Periodontal , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Proteínas , Regeneração , Células-Tronco
14.
J Dent ; 91: 103220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678476

RESUMO

OBJECTIVES: (1) develop a CPC-metformin scaffold with hPDLSC seeding for bone tissue engineering; and (2) investigate the effects of CPC-metformin scaffold on hPDLSC proliferation, osteogenic differentiation and bone matrix mineralization for the first time. METHODS: hPDLSCs were harvested from extracted teeth. CPC scaffolds (with or without metformin) were prepared. Three groups were tested: (1) control group (growth medium); (2) osteogenic group (osteogenic medium); (3) metformin + osteogenic group (CPC-metformin scaffold, cultured in osteogenic medium). hPDLSC viability, osteogenic differentiation and mineralization were measured. SEM was used to examine cell morphology. RESULTS: After culturing for 14 days, all three groups demonstrated excellent hPDLSC attachment and viability, as shown in live-dead staining, CCK-8 assay, and SEM examinations. The osteogenic group had 3-8 folds, 5 folds and 6 folds of increases in osteogenic gene expressions, ALP activity and mineral synthesis, compared to control group. Furthermore, the metformin + osteogenic group had 3-fold to 4-fold increases over those of the osteogenic group in osteogenic gene expressions, ALP activity and mineral synthesis. CONCLUSIONS: hPDLSCs were demonstrated to be a potent cell source for bone engineering. The novel CPC-metformin-hPDLSC construct is highly promising to enhance bone repair and regeneration efficacy in dental, craniofacial and orthopedic applications.


Assuntos
Fosfatos de Cálcio/química , Metformina , Osteogênese , Ligamento Periodontal , Engenharia Tecidual , Alicerces Teciduais/química , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco
15.
RSC Adv ; 9(70): 41161-41172, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540034

RESUMO

Human periodontal ligament stem cells (hPDLSCs) are promising for tissue engineering applications but have received relatively little attention. Human platelet lysate (HPL) contains a cocktail of growth factors. To date, there has been no report on hPDLSC seeding on scaffolds loaded with HPL. The objectives of this study were to develop a calcium phosphate cement (CPC)-chitosan scaffold loaded with HPL and investigate their effects on hPDLSC viability, osteogenic differentiation and bone mineral synthesis for the first time. hPDLSCs were harvested from extracted human teeth. Scaffolds were formed by mixing CPC powder with a chitosan solution containing HPL. Four groups were tested: CPC-chitosan + 0% HPL (control); CPC-chitosan + 2.66% HPL; CPC-chitosan + 5.31% HPL; CPC-chitosan + 10.63% HPL. Scanning electron microscopy, live/dead staining, CCK-8, qRT-PCR, alkaline phosphatase and bone minerals assay were applied for hPDLSCs on scaffolds. hPDLSCs attached well on CPC-chitosan scaffold. Adding 10.63% HPL into CPC increased cell proliferation and viability (p < 0.05). ALP gene expression of CPC-chitosan + 10.63% HPL was 7-fold that of 0% HPL at 14 days. Runx2, OSX and Coll1 of CPC-chitosan + 10.63% HPL was 2-3 folds those at 0% HPL (p < 0.05). ALP activity of CPC-chitosan + 10.63% HPL was 2-fold that at 0% HPL (p < 0.05). Bone minerals synthesized by hPDLSCs for CPC-chitosan + 10.63% HPL was 3-fold that at 0% HPL (p < 0.05). This study showed that CPC-chitosan scaffold was a promising carrier for HPL delivery, and HPL in CPC exerted excellent promoting effects on hPDLSCs for bone tissue engineering for the first time. The novel hPDLSC-CPC-chitosan-HPL construct has great potential for orthopedic, dental and maxillofacial regenerative applications.

16.
Nanomaterials (Basel) ; 8(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865184

RESUMO

Dental caries is prevalent worldwide. Tooth cavity restorations cost more than $46 billion annually in the United States alone. The current generation of esthetic polymeric restorations have unsatisfactory failure rates. Replacing the failed restorations accounts for 50⁻70% of all the restorations. This article reviewed developments in producing a new generation of bioactive and therapeutic restorations. This includes: Protein-repellent and anti-caries polymeric dental composites, especially the use of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminododecyl methacrylate (DMAHDM); protein-repellent adhesives to greatly reduce biofilm acids; bioactive cements to inhibit tooth lesions; combining protein-repellency with antibacterial nanoparticles of silver; tooth surface coatings containing calcium phosphate nanoparticles for remineralization; therapeutic restorations to suppress periodontal pathogens; and long-term durability of bioactive and therapeutic dental polymers. MPC was chosen due to its strong ability to repel proteins. DMAHDM was selected because it had the most potent antibacterial activity when compared to a series of antibacterial monomers. The new generation of materials possessed potent antibacterial functions against cariogenic and periodontal pathogens, and reduced biofilm colony-forming units by up to 4 logs, provided calcium phosphate ions for remineralization and strengthening of tooth structures, and raised biofilm pH from a cariogenic pH 4.5 to a safe pH 6.5. The new materials achieved a long-term durability that was significantly beyond current commercial control materials. This new generation of bioactive and nanostructured polymers is promising for wide applications to provide therapeutic healing effects and greater longevity for dental restorations.

17.
J Asian Nat Prod Res ; 18(12): 1151-1157, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27436583

RESUMO

Two new lignan glycosides, ussuriensislignan A (1) and ussuriensislignan B (2), together with seventeen known compounds (3-19), were isolated from the fruits of Pyrus ussuriensis. Their structures were determined by various spectroscopic methods. This is the first report of the isolation of lignans (compounds 1-3) from the genus Pyrus, and compounds 3-6, 12-16 were reported from Pyrus for the first time.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Frutas/química , Glicosídeos/isolamento & purificação , Lignanas/isolamento & purificação , Pyrus/química , Medicamentos de Ervas Chinesas/química , Glicosídeos/química , Lignanas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA