RESUMO
Nitrogen oxides (NOx) from diesel engine exhaust, is one of the major sources of environmental pollution. Currently, selective catalytic reduction with ammonia (NH3-SCR) is considered to be the most effective protocol for reducing NOx emissions. Nowadays, zeolite-based NH3-SCR catalysts have been industrialized and widespread used in this field. Nevertheless, with the increasingly stringent environmental regulations and implementation of the requirement of "zero emission" of diesel engine exhaust, it is extremely urgent to prepare catalysts with superior NH3-SCR activity and exceptional resistance to poisons (SO2, alkali metals, hydrocarbons, etc.). Core-shell structure zeolite-based catalysts (CSCs) have shown great promise in NH3-SCR of NOx in recent years by virtue of its relatively higher low-temperature activity, broader operation temperature window and outstanding resistance to poisons. This review mainly focuses on the recent progress of CSCs for NH3-SCR of NOx with three extensively investigated SSZ-13, ZSM-5, Beta zeolites as cores. The reaction mechanisms of resistance to sulfur poisoning, alkali metal poisoning, hydrocarbon poisoning, and hydrothermal aging are summarized. Moreover, the important role of interfacial effect between core and shell in the reaction of NH3-SCR was clarified. Finally, the future development and application outlook of CSCs are prospected.
Assuntos
Poluentes Atmosféricos , Óxidos de Nitrogênio , Emissões de Veículos , Zeolitas , Zeolitas/química , Óxidos de Nitrogênio/química , Catálise , Poluentes Atmosféricos/química , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Amônia/químicaRESUMO
This study investigates the formation of atmospheric molecular clusters containing ammonia (NH3, A), methylamine (CH3NH2, MA), or dimethylamine (CH3NHCH3, DMA) with nitric acid (HNO3, NA) using quantum mechanics. The Atmospheric Cluster Dynamic Code (ACDC) was employed to simulate the total evaporation rate, formation rate, and growth pathways of three types of clusters under dry and hydrated conditions. This study evaluates the enhancing potential of A/MA/DMA for NA-based new particle formation (NPF) at parts per trillion (ppt) levels. The results indicate that A/MA/DMA can enhance NA-based NPF at high nitric acid concentrations and low temperatures in the atmosphere. The enhancing potential of MA is weaker than that of DMA but stronger than that of A. Cluster growth predominantly follows the lowest free energy pathways on the acid-base grid, with the formation of initial acid-base dimers (NA)(A), (NA)(MA), and (NA)(DMA) being crucial. Hydration influences the evaporation rate and formation rate of clusters, especially for initial clusters. When the humidity is at 100%, the formation rate for NA-A, NA-MA, and NA-DMA clusters can increase by approximately 109, 107, and 104-fold compared to the corresponding unhydrated clusters, respectively. These results highlight the significance of nitric acid nucleation in NPF events in low-temperature, high-humidity atmospheres, particularly in regions like China with significant automobile exhaust pollution.
RESUMO
KEY MESSAGE: The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.
Assuntos
Pareamento Cromossômico , Cromossomos de Plantas , Meiose , Cromossomos de Plantas/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Segregação de Cromossomos/genética , Triploidia , Brassica rapa/genética , Brassica/genética , Brassica/fisiologia , AneuploidiaRESUMO
Background: Current treatments for osteoarthritis (OA) pain and stiffness have limitations, including adverse effects. Therefore, effective and safe complementary or alternative therapies are needed. Dietary supplement GJ 191, comprising Epimedium, Dioscorea, and Salvia miltiorrhiza extracts, may address this need. Methods: This randomized, double-blind, placebo-controlled study investigated GJ 191 supplementation on knee OA symptoms. Seventy-two adults (40-75 years) with mild to moderate knee OA and mild to moderate knee pain were enrolled. The Knee Injury and Osteoarthritis Outcome Score (KOOS), Pain Visual Analog Scale (VAS), Quality of Life questionnaire, knee joint range of motion, serum C-reactive protein, and rescue medication use were assessed. The Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) pain and stiffness scores were computed using KOOS scores. Results: Decreases in WOMAC pain scores were reported by both GJ 191 and placebo groups after 6 (-1.78 ± 2.71 and -1.34 ± 1.93, respectively; p < 0.01) and 12 (-2.31 ± 2.83 and -1.59 ± 2.69, respectively; p < 0.01) weeks, with no significant difference between groups. There were decreases in WOMAC stiffness scores for participants supplemented with GJ 191 by 0.53 ± 1.22 and 0.72 ± 1.46 (p ≤0.02) after 6 and 12 weeks, respectively, with respective decreases of 0.81 ± 1.51 and 0.75 ± 1.85 (p ≤0.03) for those on placebo. Significant improvements in current pain, as assessed by the Pain VAS, and bodily pain were reported by the GJ 191 group after 6 and 12 weeks, while the placebo group only reported significant improvements in these measures after 12 weeks. GJ 191 supplementation was safe and well tolerated. Conclusion: There was no significant difference in pain and stiffness scores between GJ 191 and placebo over the 12 weeks. While both groups reported improvements in WOMAC pain from baseline, improvements in current and bodily pain were experienced sooner with GJ 191 than placebo and were sustained over the study period. GJ 191 supplementation was safe and well tolerated. (CTR#: NCT04395547).
RESUMO
Physiologically Based Pharmacokinetic (PBPK) models can provide forecasts of the drug residues within the organism. Ractopamine (RAC) is a typical ß-agonist. In this study, we developed a PBPK model for RAC in goats. The goal was to predict the distribution of the drug after multiple oral administrations. The preliminary PBPK model for RAC in goats performed well in predicting the drug's distribution in most tissues. In our sensitivity analysis, we found that the parameter of Qclu (Blood Flow Volume through Lungs) had the greatest impact on the RAC concentrations in plasma, liver, and kidney and was the most sensitive parameter. Furthermore, our study aimed to assess the withdrawal time (WT) of RAC in different tissues after RAC long-term exposure in goats. We found that the WT of RAC in the kidney was the longest, lasting for 13 days. Overall, the insights gained from this study have important implications for optimizing drug administration in goats and ensuring appropriate withdrawal times to prevent any potential risks.
RESUMO
A 56-year-old man with a 5-year history of paroxysmal palpitations, which have worsened over the past year, was diagnosed with atrial fibrillation. During evaluation, transesophageal echocardiography revealed a left atrium (LA) tumoral mass attached to the atrial septal fossa ovale, with intra-tumoral blood flow and blood stream draining from the mass. Both coronary computed tomography angiography and coronary angiography demonstrated a coro-cameral fistula connection between the left circumflex artery (LCX) branch and the LA. In addition, they showed feeding arteries of the mass arising from the LCX. The patient underwent surgical resection of the LA mass and repair of the coronary artery fistula. Intraoperative exploration revealed a 1.7â cm × 1.0â cm jelly-like, brittle LA mass and confirmed a rupture of the supplying artery, leading to a coronary artery-left atrial fistula. Surgical ligation was executed to ensure complete sealing of the supplying coronary branch within the atrial septum. Histopathological examination confirmed the diagnosis of left atrial myxoma. The 6-month follow-up indicated no recurrence of the myxoma and restoration of sinus rhythm after radiofrequency ablation. In the literature, cases of a left circumflex artery branch-left atrial fistula due to rupture of the artery supplying a left atrial myxoma are rare.
RESUMO
Recent studies have identified multiple genetic variants of SEL1L-HRD1 ER-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here we show that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibit motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy (TEM) analysis reveals dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Lastly, loss of Purkinje cells is associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellum of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.
RESUMO
The tea plants cultivated in acidic soils are vulnerable to excessive manganese (Mn), which increases the risk of Mn2+ toxicity to physiology and development. Mn-cation diffusion facilitator (CDF) family genes have been implicated in regulating Mn homeostasis and tolerance. However, the mechanism of Mn tolerance of tea plants in acidic environments is still unknown. In this study, we initially examined the phenotypic characteristics and Mn contents variability in different tissues of tea plants under various Mn concentration at pH 5 and 4. We observed that tea plants exhibited remarkably high Mn tolerance at pH 4, with Mn accumulation notably elevated in the aboveground tissues under pH 4 condition after 28-day treatment. We found the expression levels of Mn-CDF genes, had different subcellular localization, were tissue-specific and significantly induced by high Mn concentrations at pH 4 condition. Furthermore, the yeast complementation assays indicated that the heterologous expression of Mn-CDF genes restored the growth of a Mn2+ sensitive yeast strain, Δpmr1. Taken together, these results suggest that Mn-CDF family genes function as Mn transporters to participate in Mn tolerance in acidic environments. This study provides reference for further study on the mechanism of maintaining Mn homeostasis in tea plants under soil acidification.
RESUMO
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Assuntos
Adenoma , Imageamento por Ressonância Magnética , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/patologia , Adenoma/diagnóstico por imagem , Adenoma/patologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , RadiômicaRESUMO
Activating KRAS mutations are a key feature of pancreatic ductal adenocarcinoma (PDA) and drive tumor initiation and progression. However, mutant KRAS by itself is weakly oncogenic. The pathways that cooperate with mutant KRAS to induce tumorigenesis are less-defined. Analyzing organoids and murine and human pancreatic specimens, we found that the receptor tyrosine kinase FGFR2 was progressively up-regulated in mutant KRAS-driven metaplasia, pre-neoplasia and Classical PDA. Using genetic mouse models, we showed that FGFR2 supported mutant KRAS-driven transformation of acinar cells by promoting proliferation and MAPK pathway activation. FGFR2 abrogation significantly delayed tumor formation and extended the survival of these mice. Furthermore, we discovered that FGFR2 collaborated with EGFR and dual blockade of these receptor signaling pathways significantly reduced mutant KRAS-induced pre-neoplastic lesion formation. Together, our data have uncovered a pivotal role for FGFR2 in the early phases of pancreatic tumorigenesis, paving the way for future therapeutic applications of FGFR2 inhibitors for pancreatic cancer interception. STATEMENT OF SIGNIFICANCE: Mutant KRAS-expressing pancreatic intraepithelial neoplasias (PanINs), the precursor lesions of PDA, are prevalent in the average healthy adult but rarely advance to invasive carcinoma. Here, we discovered that FGFR2 promoted PDA progression by amplifying mutant KRAS signaling and that inactivation of FGFR2 intercepted disease progression.
RESUMO
Assessing the spatial differentiation characteristics of soil organic carbon ï¼SOCï¼ in cultivated land in major grain-producing areas is important for regional cultivated land quality management and national food security. We investigated 519 soil profiles of cultivated land in Hebei Province ï¼0-120 cm equally divided into six layersï¼, and obtained 2961 samples. We used geostatistical methods and spatial exploratory analysis to reveal the spatial distribution pattern of SOC in cultivated land in Hebei Province and the impacts of climate, topography, geomorphology, soil properties, and anthropogenic use on the spatial distribution of SOC in cultivated land soils. The results showed thatï¼ â The SOC content of cultivated land in Hebei Province showed a decreasing trend with the increase in soil depth, with the highest mean value of ωï¼SOCï¼ of 9.57 g·kg-1 in A1 ï¼0-20 cmï¼ and the lowest mean value of 4.17 g·kg-1 in A6 ï¼100-120 cmï¼, and the coefficient of variation showed an increasing trend with the increase in soil depth. â¡ The SOC at different depths of cultivated land in Hebei Province had similar horizontal spatial distribution characteristics, and in general, showed a trend of being high in the northwest and low in the southeast. ⢠Soil texture and topography were the main influencing factors for the spatial variation of SOC in cultivated land in Hebei Province, showing that the more clay-rich the soil texture, the greater the SOC content, and the higher the elevation, the greater the SOC content. Soil pH also influenced the SOC content of the profile. The SOC content of the surface layer is mainly affected by anthropogenic use, whereas the bottom layer is affected by the cumulative temperature.
RESUMO
Anaplastic thyroid carcinoma (ATC) is reckoned as an infrequent but extremely advanced neoplasm of the endocrine system. Diaphanous-related formin 3 (DIAPH3) has been extensively implicated in carcinogenic events, but it has not been introduced in ATC. Herein, the role of DAPIH3 and the interrelated functional mechanism are characterised in ATC. The Gene Expression Omnibus (GEO) database was checked for differential DIAPH3 expression in ATC samples and noncancerous samples. Western blotting examined DIAPH3 and forkhead box M1 (FOXM1) expression in ATC cells. In vitro cell counting kit 8 (CCK-8) method, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, Scratch, Matrigel invasion, and terminal-deoxynucleotidyl transferase mediated nick end labelling (TUNEL) assays were used to assess the potential of cells to proliferate, migrate, and invade as well as the cellular apoptotic rate. Co-IP was applied to access DIAPH3-FOXM1 protein interaction. Western blotting also disclosed the expression of proteins associated with apoptosis and Wnt/ß-catenin signalling. DIAPH3 was hyper-expressed in papillary cell carcinoma (PTC) tissues and cells. Depleting DIAPH3 strongly eliminated the proliferative, migratory, as well as invasive capabilities of PTC cells while intensifying the apoptotic ability. FOXM1 also harboured elevated expression in PTC cells. FOXM1 was the binding partner with DIAPH3, and the 2 were positively correlated. FOXM1 upregulation again exacerbated the potentials to proliferate, migrate, and invade but it repressed the apoptotic rate of DIAPH3-depleted cells. Furthermore, loss of DIAPH3 downregulated FOXM1 to block Wnt/b-catenin signalling in PTC cells. Combined with these findings, DIAPH3 might favour the aggressive advancement of ATC and motivate the Wnt/ß-catenin signalling via binding with FOXM1.
Assuntos
Proteína Forkhead Box M1 , Forminas , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Via de Sinalização Wnt , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Forminas/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Apoptose , Movimento CelularRESUMO
Discovery of highly efficient and thermal stable phosphors is the focus of the studies in phosphor-converted white light-emitting diodes (LEDs). Herein, a tetraphenylethylene-based cerium metal-organic framework (SYNU-2) was synthesized and characterized. The intricate architecture of SYNU-2 shows an overall 3D â 3D 2-fold interpenetration framework. SYNU-2 exhibited good luminescence properties, and its latent fingerprint developer was prepared, which showed good fluorescence and stability under ultraviolet (UV) radiation. It is worth noting that a prototype WLED device can be designed using SYNU-2 and red phosphors (Ca,Sr)AlSiN3:Eu2+ with CIE coordinates of (0.33, 0.33) at an applied 3 V bias.
RESUMO
Metastatic osteosarcoma is a commonly seen malignant tumor in adolescents, with a five year survival rate of approximately 20% and a lack of treatment options. Osteosarcoma cancer stem cells are considered to be important drivers of the metastasis of osteosarcoma, and therefore their clearance is considered a promising strategy for treating metastatic osteosarcoma. In the relevant literature, retinoic acid (ATRA) is considered effective for eliminating osteosarcoma stem cells, but it has some inherent disadvantages, including poor solubility, difficulty in entering cells, and structural instability. Tetrahedral framework nucleic acids (tFNAs) are a type of nanoparticles that can carry small-molecule drugs into cells to exert therapeutic effects. Therefore, we designed and synthesized a nanoparticle named T-ATRA by using tFNAs to load ATRA and studied its effect in a nude mouse model. T-ATRA is more effective than ATRA in the clearance of osteosarcoma stem cells and in inhibiting osteosarcoma cell metastasis via the Wnt signaling pathway, thus prolonging the survival time of nude mice with osteosarcoma.
Assuntos
Camundongos Nus , Células-Tronco Neoplásicas , Osteossarcoma , Tretinoína , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Animais , Tretinoína/química , Tretinoína/farmacologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Portadores de Fármacos/químicaRESUMO
Human-robot collaboration (HRC) is a novel manufacturing paradigm designed to fully leverage the advantage of humans and robots, efficiently and flexibly accomplishing customized manufacturing tasks. However, existing HRC systems lack the transfer and generalization capability for environment perception and task reasoning. These limitations manifest in: (1) current methods rely on specialized models to perceive scenes; and need retraining the model when facing unseen objects. (2) current methods only address predefined tasks, and cannot support undefined task reasoning. To avoid these limitations, this paper proposes a novel HRC approach based on Foundation Models (FMs), including Large Language models (LLMs) and Vision Foundation Models (VFMs). Specifically, a LLMs-based task reasoning method is introduced, utilizing prompt learning to transfer LLMs into the domain of HRC tasks, supporting undefined task reasoning. A VFMs-based scene semantic perception method is proposed, integrating various VFMs to achieve scene perception without training. Finally, a FMs-based HRC system is developed, comprising perception, reasoning, and execution modules for more flexible and generalized HRC. The superior performances of FMs in perception and reasoning are demonstrated by extensive experiments. Furthermore, the feasibility and effectiveness of the FMs-based HRC system are validated through an part assembly case involving a satellite component model.
Assuntos
Robótica , Humanos , Robótica/métodos , Sistemas Homem-Máquina , Modelos TeóricosRESUMO
Purpose: Hashimoto's thyroiditis (HT) is one of the most commonly encountered types of autoimmune thyroid disorders (AITDs), influenced by environmental factors, genetics, and the immune system. Previous research has shown a correlation between gut microbiota and HT, as well as the involvement of immune cells in its onset and progression. We aimed to investigate whether immune cells act as intermediaries in the causal relationship between gut microbiota and HT. Methods: In this study, we conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the relationship between gut microbiota and HT using data from genome-wide association studies (GWAS) and the MiBioGen study. Subsequently, MR analyses were performed to investigate the interactions between 731 immune cells and gut microbiota. Additionally, an MR analysis was performed to examine the association between HT and these 731 immune cells, using a GWAS dataset that included 3,757 European subjects. This approach provided insights into the impact of 22 million genetic variants on 731 immune cell signatures. Results: There was a causal relationship between the increase in the number of 15 gut microbiota and HT. We observed that the genus Akkermansia, family Alcaligenaceae, family Desulfovibrionaceae, family Verrucomicrobiaceae, class Verrucomicrobiae, order Verrucomicrobiales, phylum Verrucomicrobia, class Alphaproteobacteria, order Desulfovibrionales, genus Ruminococcus torques group, genus Butyrivibrio, and genus Coprococcus3 were negatively correlated with HT. In addition, the genus Intestinimonas, genus Turicibacter, and genus Anaerostipes were positively correlated with HT. We identified EM CD4 + T cells as a mediator between the gut microbiota and HT. Conclusion: In conclusion, we presented causal associations between the EM CD4 + T cell-mediated gut microbiota and HT, as inferred from the MR findings derived from extensive aggregated GWAS data. Our research offers guidance and direction for treating and preventing HT.
RESUMO
BACKGROUND: Currently, there is a lack of evidence for the long-term bioprosthetic valve durability of patients with bicuspid aortic valve (BAV) following transcatheter aortic valve replacement (TAVR). METHODS AND RESULTS: This study aimed to evaluate hemodynamic outcome, structural valve deterioration, and bioprosthetic valve failure during long-term follow-up after TAVR in patients with BAV versus patients with tricuspid aortic valve (TAV). Patients with BAV and TAV who underwent TAVR between 2012 and 2020, with echocardiography followed for at least 3 years, were included. Baseline characteristics, long-term valve hemodynamic performance, structural valve deterioration, and bioprosthetic valve failure were compared between patients with BAV and TAV. A total of 170 patients with BAV and 145 patients with TAV were included. The mean duration of follow-up for patients with BAV and TAV was 5.2±1.8 and 5.0±1.7 years. No significant differences were observed in the rates of structural valve deterioration and bioprosthetic valve failure between patients with BAV and TAV: structural valve deterioration, BAV 20 (11.8%) versus TAV 16 (11.0%) at last follow-up (P=0.861); bioprosthetic valve failure, BAV 3 (1.8%) versus TAV 7 (4.8%) at last follow-up (P=0.196). More than moderate intravalvular aortic regurgitation (1.8% versus 4.8%, P=0.196) and paravalvular leak (6.5% versus 3.4%, P=0.305) were rare in both patients with BAV and patients with TAV. CONCLUSIONS: This study indicated satisfactory long-term valve durability of TAVR in patients with BAV. Comparable hemodynamic outcome, structural valve deterioration, and bioprosthetic valve failure could be achieved in patients with BAV and TAV during long-term follow-up after TAVR.
RESUMO
RATIONALE: Programmed cell death (PD) -1 inhibitors has significantly improved the prognosis of cancer patients by enhancing antitumor immune responses. However, PD-1 inhibitors are associated with immune-related adverse events, some of which are rare and potentially life-threatening. Thus far, elevated creatine kinase (CK) and creatinine caused by a novel PD-1 inhibitor (sintilimab)-induced hypothyroidism has not yet been reported. PATIENT CONCERNS: A 63-year-old male patient with esophageal cancer who developed hypothyroidism accompanied by unexplained increases in CK and creatinine after sintilimab treatment. DIAGNOSIS: Since the increases in CK and creatinine paralleled the decrease in thyroxine, after excluding other potential conditions, we speculated that the muscular and renal dysfunction might be caused by sintilimab-induced hypothyroidism. INTERVENTIONS AND OUTCOMES: As the patient's thyroid function improved with levothyroxine replacement therapy, the levels of CK and creatinine concomitantly returned to normal. CONCLUSION AND LESSONS: The elevated CK and creatinine levels in this patient were caused by sintilimab-induced hypothyroidism. Our case highlights the importance of keeping PD-1 induced hypothyroidism in mind when patients present with unexplained increased levels of CK and creatinine. Hypothyroidism-related muscular and renal dysfunctions, which can be restored with thyroid hormone replacement, need to be identified early and treated promptly so that unnecessary examinations and treatments can be avoided in these patients.
Assuntos
Anticorpos Monoclonais Humanizados , Creatina Quinase , Creatinina , Hipotireoidismo , Humanos , Masculino , Pessoa de Meia-Idade , Hipotireoidismo/induzido quimicamente , Creatina Quinase/sangue , Creatinina/sangue , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Tiroxina/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversosRESUMO
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.