Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309407, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491739

RESUMO

Flexible pressure sensors play a significant role in wearable devices and electronic skin. Iontronic pressure sensors with high sensitivity, wide measurement range, and high resolution can meet requirements. Based on the significant deformation characteristics of alveoli to improve compressibility, and the ability of the arch to disperse vertical pressure into horizontal thrust to increase contact area, a graded hollow ball arch (GHBA) microstructure is proposed, greatly improving sensitivity. The fabrication of GHBA ingeniously employs a double-sided structure. One side uses mold casting to create convex structures, while the other utilizes the evaporation of moisture during the curing process to form concave structures. At the same time, a novel side-by-side package structure is proposed, ensuring pressure on flexible substrate is maximally transferred to the GHBA microstructure. Within the range of 0.2 Pa-300 kPa, the iontronic pressure sensor achieves a maximum sensitivity of 10 420.8 kPa-1 , pressure resolution of 0.1% under the pressure of 100 kPa, and rapid response/recovery time of 40/35 ms. In wearable devices, it is capable of monitoring dumbbell curl exercises and wirelessly correcting sitting positions. In electronic skin, it can non-contactly detect the location of the wind source and achieve object classification prediction when combined with the CNN model.

2.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544024

RESUMO

Real-time monitoring of rainwater is a critical issue in the development of autonomous vehicles and smart homes, while the corresponding sensors play a pivotal role in ensuring their sensitivity. Here, we study a self-powered intelligent water droplet monitoring sensor based on a solid-liquid triboelectric nanogenerator (SL-TENG). The sensor comprises a SL-TENG, a signal acquisition module, a central processing unit (CPU), and a wireless transmission module, facilitating the real-time monitoring of water droplet signals. It is worth noting that the SL-TENG has self-powering characteristics and can convert the kinetic energy of water droplets into electrical energy. The excellent output performance, with open-circuit voltage of 9 V and short-circuit current of 2 µA without any treatment of the SL-TENG, can provide an effective solution to the problem that traditional sensor need battery replacement. In addition, the SL-TENG can generate stable amplitude electrical signals through water droplets, exemplified by the absence of decay in a short-circuit current within 7 days. More importantly, the sensor is equipped with intelligent analytical capabilities, allowing it to assess rainfall based on variables such as amplitude and frequency. Due to its excellent stability and intelligent analysis, this sensor can be used for roof rainwater monitoring, intravenous administration monitoring, and especially in automobile automatic wipers and other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA