Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis ; 23(11): 58, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733520

RESUMO

Eye movements transform a spatial scene into luminance modulations on the retina. Recent work has shown that this transformation is highly structured: within human temporal sensitivity, saccades deliver power that increases in proportion to spatial frequency (SF) up to a critical frequency and remains constant beyond that. Importantly, the critical SF increases with decreasing amplitude. Therefore, at sufficiently low SFs, larger saccades effectively deliver stronger input signals to the retina. Here we tested whether this input reformatting has the predicted perceptual consequences, by examining how large and small saccades (6o & 1o) affect contrast sensitivity. We measured relative sensitivity at two SFs: a reference (0.5 cpd), equal to the critical SF for the small saccade, and a probe at either a lower or higher SF (0.1/2.5 cpd). We predicted that large saccades enhance visibility only when the probe has a lower SF than the reference. Subjects (N=7) made instructed saccades while presented with a plaid of overlapping orthogonal gratings at the two SFs and reported which grating was more visible. Results closely follow theoretical predictions: psychometric functions following small and large saccades only differed with the lower SF probe, in which case the larger saccade significantly enhanced visibility. In sum, saccades enable selectivity not only in the spatial domain, but also in the spatial-frequency domain.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Humanos , Sensibilidades de Contraste , Psicometria , Retina
2.
J Vis ; 23(5): 4, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37140912

RESUMO

Reliably measuring eye movements and determining where the observer looks are fundamental needs in vision science. A classical approach to achieve high-resolution oculomotor measurements is the so-called dual Purkinje image (DPI) method, a technique that relies on the relative motion of the reflections generated by two distinct surfaces in the eye, the cornea and the back of the lens. This technique has been traditionally implemented in fragile and difficult to operate analog devices, which have remained exclusive use of specialized oculomotor laboratories. Here we describe progress on the development of a digital DPI, a system that builds on recent advances in digital imaging to enable fast, highly precise eye-tracking without the complications of previous analog devices. This system integrates an optical setup with no moving components with a digital imaging module and dedicated software on a fast processing unit. Data from both artificial and human eyes demonstrate subarcminute resolution at 1 kHz. Furthermore, when coupled with previously developed gaze-contingent calibration methods, this system enables localization of the line of sight within a few arcminutes.


Assuntos
Tecnologia de Rastreamento Ocular , Cristalino , Humanos , Movimentos Oculares , Diagnóstico por Imagem , Córnea
3.
Nat Commun ; 14(1): 269, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650146

RESUMO

It has long been debated how humans resolve fine details and perceive a stable visual world despite the incessant fixational motion of their eyes. Current theories assume these processes to rely solely on the visual input to the retina, without contributions from motor and/or proprioceptive sources. Here we show that contrary to this widespread assumption, the visual system has access to high-resolution extra-retinal knowledge of fixational eye motion and uses it to deduce spatial relations. Building on recent advances in gaze-contingent display control, we created a spatial discrimination task in which the stimulus configuration was entirely determined by oculomotor activity. Our results show that humans correctly infer geometrical relations in the absence of spatial information on the retina and accurately combine high-resolution extraretinal monitoring of gaze displacement with retinal signals. These findings reveal a sensory-motor strategy for encoding space, in which fine oculomotor knowledge is used to interpret the fixational input to the retina.


Assuntos
Movimentos Oculares , Fixação Ocular , Humanos , Movimento (Física) , Retina
4.
Curr Biol ; 30(20): 3999-4008.e2, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32916116

RESUMO

Humans use rapid gaze shifts, known as saccades, to explore visual scenes. These movements yield abrupt luminance changes on the retina, which elicit robust neural discharges at fixation onsets. Yet little is known about the spatial content of saccade transients. Here, we show that saccades redistribute spatial information within the temporal range of retinal sensitivity following two distinct regimes: saccade modulations counterbalance (whiten) the spectral density of natural scenes at low spatial frequencies and follow the external power distribution at higher frequencies. This redistribution is a consequence of saccade dynamics, particularly the speed/amplitude/duration relation known as the main sequence. It resembles the redistribution resulting from inter-saccadic eye drifts, revealing a continuum in the modulations given by different eye movements, with oculomotor transitions primarily acting by regulating the bandwidth of whitening. Our findings suggest important computational roles for saccade transients in the establishment of spatial representations and lead to testable predictions about their consequences for visual functions and encoding mechanisms.


Assuntos
Movimentos Sacádicos/fisiologia , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Estimulação Luminosa , Retina/fisiologia , Visão Ocular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA