Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Am J Transl Res ; 16(4): 1256-1265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715827

RESUMO

OBJECTIVE: This study aims to evaluate the clinical efficacy and short-term prognosis of using flexible cystoscopy with percutaneous nephrolithotomy to treat complex renal stones. METHODS: A retrospective analysis was conducted on patients with complex kidney stones treated at Gansu Provincial Hospital of TCM and Lanzhou City No. 2 People's Hospital from July 2019 to July 2022. The study divided the patients into a control group (n=95), who underwent percutaneous nephrolithotomy alone, and an observation group (n=109), who received additional holmium laser lithotripsy and cystoscopy. We compared stone clearance rates at 5 days and 1 month post-surgery, analyzed patient prognosis over a year based on stone recurrence, and assessed risk factors through logistic regression. Perioperative data, changes in renal function indiex 3 days post-surgery, and complication rates were also evaluated. RESULTS: The observation group exhibited a significantly higher stone clearance rate at 5 days post-surgery (P=0.002) compared to the control group, although no significant difference was observed at 1 month (P=0.823). The operative time was significantly shorter (P<0.001), and postoperative levels of BUA, Cys-c, and ß2-BMG were lower (P<0.05) in the observation group. Additionally, treatment regimen, BMI, and STONE score were influencing factors for stone recurrence within 1 year. CONCLUSION: Flexible cystoscopy combined with percutaneous nephrolithotomy offers superior short-term outcomes in the treatment of complex renal stones, including enhanced stone clearance, reduced operative time, and minimized renal function impairment shortly after surgery. Moreover, treatment approach, BMI, and STONE score play pivotal roles in predicting stone recurrence.

2.
Small ; 20(8): e2305374, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724002

RESUMO

Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.


Assuntos
Cicatriz Hipertrófica , Exossomos , MicroRNAs , Humanos , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Proliferação de Células/genética
3.
Small ; 20(16): e2308187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38016073

RESUMO

Spintronic devices work by manipulating the spin of electrons other than charge transfer, which is of revolutionary significance and can largely reduce energy consumption in the future. Herein, ultrathin two-dimensional (2D) non-van der Waals (non-vdW) γ-Ga2O3 with room temperature ferromagnetism is successfully obtained by using supercritical CO2 (SC CO2). The stress effect of SC CO2 under different pressures selectively modulates the orientation and strength of covalent bonds, leading to the change of atomic structure including lattice expansion, introduction of O vacancy, and transition of Ga-O coordination (GaO4 and GaO6). Magnetic measurements show that pristine γ-Ga2O3 is nonferromagnetic, whereas the SC CO2 treated γ-Ga2O3 exhibits obvious ferromagnetic behavior with an optimal magnetization of 0.025 emu g-1 and a Curie temperature of 300 K.

4.
Biol Pharm Bull ; 46(12): 1797-1804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044098

RESUMO

Gestational diabetes mellitus (GDM) is an important cause of the increase in incidence rate and mortality of pregnant women and perinatal infants. This study aimed to analyze the role of fentanyl, a µ-opioid agonist, in the GDM progression. The high glucose (HG) treatment HTR8/SVneo cells was used as a GDM model in vitro. The cell viability was assessed with cell counting kit-8 assay. The apoptosis rate was analyzed with flow cytometry and the transwell assay was conducted to test the cell migration and invasion. RT-quantitative PCR (qPCR) assay was performed to determine the relative expressions of related genes. The N6-Methyladenosine (m6A) levels were analyzed with MeRIP analysis. The tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and IL-10 levels of the cells were analyzed with commercial kits. The results showed that fentanyl increased the cell viability, migration and invasion, and IL-10 levels, and declined the apoptosis rate, TNF-α and IL-1ß levels of the HG stimulated HTR8/SVneo cells. The chemokine ligand 5 (CCL5) was over expressed in GDM tissues and HG stimulated HTR8/SVneo cells, which was depleted after fentanyl treatment. Over expressed CCL5 neutralized the fentanyl roles in the HG stimulated HTR8/SVneo cells. The methyltransferase-like protein 14 (METTL14) levels was decreased in HG stimulated HTR8/SVneo cells, which was up-regulated after fentanyl treatment. Additionally, METTL14 silenced prominently decreased the m6A and mRNA levels, along with the mRNA stability of CCL5. In conclusion, fentanyl promoted the growth and inhibited the apoptosis of the HG stimulated HTR8/SVneo cells through regulating the METTL14 mediated CCL5 levels.


Assuntos
Diabetes Gestacional , Trofoblastos , Feminino , Humanos , Gravidez , Linhagem Celular , Movimento Celular/genética , Quimiocina CCL5/metabolismo , Diabetes Gestacional/metabolismo , Fentanila/farmacologia , Fentanila/metabolismo , Interleucina-10/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Placenta , Trofoblastos/metabolismo , Trofoblastos/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Transl Res ; 15(9): 5949-5958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854230

RESUMO

OBJECTIVE: To predict surgical outcomes and postoperative hemorrhage risk for percutaneous nephrolithotomy (PCNL) in cases of staghorn-shaped stones using lasso regression. METHODS: We collected data from 104 patients with staghorn-shaped stones treated with PCNL between January 2019 and December 2022 at the Department of Urology Surgery, the Third People's Hospital of Gansu Province. Medical history, stone-related parameters, and lab test data were collected. Patients were categorized into stone clearance or residual groups based on postoperative stone status, and bleeding or non-bleeding groups based on post-surgery blood transfusion. The lasso model's predictive ability for post-PCNL Stone Free Rate (SFR) and hemorrhage risk was evaluated using ROC curves. The lasso model's predictive performance for post-PCNL SFR was compared to the S.T.O.N.E. score. RESULTS: Overall stone clearance rate was 59.29%. The lasso model identified hypertension history, calyx count at stone location, prior calyx surgeries, age, operation duration, and pre-op creatinine level as SFR predictors. The AUC of lasso model (0.867) significantly surpassed the S.T.O.N.E. model (0.748) (P=0.006) in predicting post-PCNL SFR. In addition, the AUC of lasso model in predicting the risk of postoperative bleeding was 0.779, suggesting an ability in the prediction of bleeding occurrence. CONCLUSION: A predictive model utilizing lasso algorithm was successfully established. It effectively predicts stone clearance rate and bleeding risk after PCNL for staghorn shaped kidney stones.

6.
Front Bioeng Biotechnol ; 11: 1103515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937753

RESUMO

Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of osteoporosis and is accompanied by high morbidity and mortality. Long-term usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass via their effects on bone cells. Currently, there are various clinical pharmacological treatments to regulate bone mass and skeletal health. Pulsed electromagnetic fields (PEMFs) are applied to treat patients suffering from delayed fracture healing and non-unions. PEMFs may be considered a potential and side-effect-free therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of bone mass and strength. However, the underlying signaling pathways via which PEMFs influence GIOP remain unclear. This review attempts to summarize the underlying cellular mechanisms of GIOP. Furthermore, recent advances showing that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of using PEMFs as therapy for GIOP.

7.
ACS Appl Mater Interfaces ; 15(1): 903-913, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542539

RESUMO

Improving the utilization of platinum in proton-exchange membrane (PEM) fuel cells is critical to reducing their cost. In the past decade, numerous Pt-based oxygen reduction reaction catalysts with high specific and mass activities have been developed. However, the high activities are mostly achieved in rotating disk electrode (RDE) measurement and have rarely been accomplished at the membrane electrode assembly (MEA) level. The failure of these direct translations from RDE to MEA has been well documented with several key reasons having been previously identified. One of them is the resistance caused by complex mass transport pathways in the MEA. Herein, we improve the proton and oxygen transportations in the MEA by building a thin and uniform distribution of ionomer on the catalyst surface. As a result, a PEM fuel cell design is capable of showing a current density improvement of 38% at the same voltage (0.6 V) under the H2/air operation.

8.
Chemosphere ; 312(Pt 1): 137262, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400195

RESUMO

Pyrolysis of agricultural waste into biochar for soil remediation is a useful solid waste management strategy. However, it is still unclear how different agricultural feedstocks affect the properties of biochars and their effectiveness in remediation of PBDE-contaminated soil. In this study, we systematically investigated dynamic alterations of soil properties, microbial communities, and PBDE dissipation and bioavailability induced by the application of biochars from manure (MBC) and straw (SBC) to PBDE-contaminated soil. The results showed that soil properties, microbial community structure, and diversity changed differently with the incorporation of the two biochars. MBC had a larger surface area (17.4 m2/g) and a higher nutrient content (45.1% ash content), making it more suitable for use as a soil additive to improve soil quality and nutrient conditions, as well as to stimulate microbial growth. SBC showed higher adsorption capacity for 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (26.73 ± 0.65 mg/g), thus lowering the bioavailability and ecological risk of BDE-47 in soil. BDE-47 was stepwise debrominated into lower brominated PBDE by PBDE-degrading bacteria. MBC accelerated the debromination of BDE-47 (10.1%) by promoting PBDE-degrading microorganisms, while this was inhibited by SBC (3.5%) due to strong adsorption of BDE-47. In addition, we found that both types of biochar favored Nitrospirae bacteria and promoted N cycling. Overall, biochars from manure and straw can positively shape soil microbial communities differently by altering soil properties, soil fertility and nutrient availability, and the fate and the effects of contaminants, which ultimately led to a difference in the potential of biochars for their use in soil remediation.


Assuntos
Microbiota , Poluentes do Solo , Esterco , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Nitrogênio
9.
Water Res ; 217: 118377, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35397372

RESUMO

Ferrate (Fe(VI)) salts like K2FeO4 are efficient green oxidants to remediate organic contaminants in water treatment. Minerals are efficient sorbents of contaminants and also excellent solid heterogeneous catalysts which might affect Fe(VI) remediation processes. By targeting the typical polycyclic aromatic hydrocarbon compound - pyrene, the application of Fe(VI) for oxidation of pyrene immobilized on three minerals, i.e., montmorillonite, kaolinite and goethite was studied for the first time. Pyrene immobilized on the three minerals was efficiently oxidized by Fe(VI), with 87%-99% of pyrene (10 µM) being degraded at pH 9.0 in the presence of a 50-fold molar excess Fe(VI). Different minerals favored different pH optima for pyrene degradation, with pH optima from neutral to alkaline following the order of montmorillonite (pH 7.0), kaolinite (pH 8.0), and goethite (pH 9.0). Although goethite revealed the highest catalytic activity on pyrene degradation by Fe(VI), the greater noneffective loss of the oxidative species by ready self-decay in the goethite system resulted in lower degradation efficiency compared to montmorillonite. Protonation and Lewis acid on montmorillonite and goethite assisted Fe(VI) oxidation of pyrene. The intermediate ferrate species (Fe(V)/Fe(IV)) were the dominant oxidative species accountable for pyrene oxidation, while the contribution of Fe(VI) species was negligible. Hydroxyl radical was involved in mineral-immobilized pyrene degradation and contributed to 11.5%-27.4% of the pyrene degradation in montmorillonite system, followed by kaolinite (10.8%-21.4%) and goethite (5.1%-12.2%) according to the hydroxyl radical quenching experiments. Cations abundant in the matrix and dissolved humic acid hampered pyrene degradation. Finally, two different degradation pathways both producing phthalic acid were identified. This study demonstrates efficient Fe(VI) oxidation of pyrene immobilized on minerals and contributes to the development of efficient environmentally friendly Fe(VI) based remediation techniques.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bentonita , Radical Hidroxila , Ferro , Caulim , Cinética , Minerais , Oxirredução , Estresse Oxidativo , Pirenos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
10.
Environ Sci Pollut Res Int ; 29(7): 10332-10344, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34523088

RESUMO

The effects of Na-montmorillonite (Na-Mt) content and curing age on enzyme-induced carbonate precipitation (EICP)-treated soil were studied. First, the effects of Na-Mt addition on the urease activity, Ca2+ precipitation rate, and pH of the solution were analyzed through tube tests. Then, Na-Mt-modified EICP was used to reinforce silty sand in the Yellow River flooding area in China. The solidification effect and action mechanism of Na-Mt were investigated via the unconfined compressive strength (UCS) test, calcium carbonate content (CCC) measurement, X-ray diffraction, and scanning electron microscope analyses, wherein soil treated by conventional EICP and soil treated with Na-Mt alone were considered the control group. Na-Mt improved the urease activity and Ca2+ precipitation rate, lowered the pH, increased the CaCO3 production through chelation, then regulated the morphology of the CaCO3 crystals and facilitated the formation of densely aggregated calcite. The CCC and mechanical parameters increased rapidly during the first 7 days of curing, and then slowed down. The incorporation of 8% Na-Mt enhanced the UCS and Ca2+ utilization ratio at curing age of 7 days by 1.4 and 2.72 times, respectively, compared with that of traditional EICP; and the optimal Na-Mt content was identified to be 8%. At Na-Mt contents lower than 8%, the mathematically expressed improvement effect of the Na-Mt-modified EICP on the soil strength was greater than the arithmetic sum of that when these two approaches applied individually; this result confirms that the Na-Mt-modified EICP technique proposed herein is an efficient approach for solidifying fine-grained soil.


Assuntos
Bentonita , Areia , Carbonato de Cálcio , Íons , Solo
11.
Materials (Basel) ; 14(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071150

RESUMO

Enzyme-induced calcium carbonate precipitation (EICP) technology can improve the strength of treated soil. But it also leads to remarkable brittleness of the soil. This study used polyvinyl alcohol (PVA) fiber combined with EICP to solidify sand. Through the unconfined compressive strength (UCS) test, the effect of PVA fiber incorporation on the mechanical properties of EICP-solidified sand was investigated; the distribution of CaCO3 in the sample and the microstructure of fiber-reinforced EICP-treated sand were explored through the calcium carbonate content (CCC) test and microscopic experiment. Compared with the sand treated by EICP, the strength and stiffness of the sand reinforced by the fiber combined with EICP were greatly improved, and the ductility was also improved to a certain extent. However, the increase of CCC was extremely weak, and the inhomogeneity of CaCO3 distribution was enlarged; the influence of fiber length on the UCS and CCC of the treated sand was greater than that of the fiber content. The improvement of EICP-solidified sand by PVA fiber was mainly due to the formation of a "fiber-CaCO3-sand" spatial structure system through fiber bridging, not the increase of CCC.

12.
Asian J Androl ; 23(4): 396-399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33565428

RESUMO

Optimal vision and ergonomics are essential factors contributing to the achievement of good results during microsurgery. The three-dimensional (3D) digital image microscope system with a better 3D depth of field can release strain on the surgeon's neck and back, which can improve outcomes in microsurgery. We report a randomized prospective study of vasoepididymostomy and vasovasostomy using a 3D digital image microscope system (3D-DIM) in rats. A total of 16 adult male rats were randomly divided into two groups of 8 each: the standard operating microscope (SOM) group and the 3D-DIM group. The outcomes measured included the operative time, real-time postoperative mechanical patency, and anastomosis leakage. Furthermore, a user-friendly microscope score was designed to evaluate the ergonomic design and equipment characteristics of the microscope. There were no differences in operative time between the two groups. The real-time postoperative mechanical patency rates were 100.0% for both groups. The percentage of vasoepididymostomy anastomosis leakage was 16.7% in the SOM group and 25.0% in the 3D-DIM group; however, no vasovasostomy anastomosis leakage was found in either group. In terms of the ergonomic design, the 3D-DIM group obtained better scores based on the surgeon's feelings; in terms of the equipment characteristics, the 3D-DIM group had lower scores for clarity and higher scores for flexibility and adaptivity. Based on our randomized prospective study in a rat model, we believe that the 3D-DIM can improve surgeon comfort without compromising outcomes in male infertility reconstructive microsurgery, so the 3D-DIM might be widely used in the future.


Assuntos
Microcirurgia/normas , Vasovasostomia/instrumentação , Animais , Modelos Animais de Doenças , Microscopia de Vídeo/instrumentação , Microscopia de Vídeo/métodos , Microcirurgia/métodos , Microcirurgia/estatística & dados numéricos , Ratos , Ratos Sprague-Dawley , Vasovasostomia/métodos
13.
Small ; 17(13): e2007333, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33590693

RESUMO

The hydrogen evolution reaction (HER) is a significant cathode step in electrochemical devices, especially in water splitting, but developing efficient HER catalysts remains a great challenge. Herein, comprehensive density functional theory calculations are presented to explore the intrinsic HER behaviors of a series of ruthenium dichalcogenide crystals (RuX2 , X = S, Se, Te). In addition, a simple and easily scaled production strategy is proposed to synthesize RuX2 nanoparticles uniformly deposited on carbon nanotubes. Consistent with theoretical predictions, the RuX2 catalysts exhibit impressive HER catalytic behavior. In particular, marcasite-type RuTe2 (RuTe2 -M) achieves Pt-like activity (35.7 mV at 10 mA cm-2 ) in an acidic electrolyte, and pyrite-type RuSe2 presents outstanding HER performance in an alkaline media (29.5 mV at 10 mA cm-2 ), even superior to that of commercial Pt/C. More importantly, a RuTe2 -M-based proton exchange membrane (PEM) electrolyzer and a RuSe2 -based anion exchange membrane (AEM) electrolyzer are also carefully assembled, and their outstanding single-cell performance points to them being efficient cathode candidates for use in hydrogen production. This work makes a significant contribution to the exploration of a new class of transition metal dichalcogenides with remarkable activity toward water electrolysis.

14.
Sensors (Basel) ; 20(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121020

RESUMO

The double tendon-sheath drive system is widely used in the design of surgical robots and search and rescue robots because of its simplicity, dexterity, and long-distance transmission. We are attempting to apply it to manipulators, wherenon-linear characteristics such as gaps, hysteresis, etc., due to friction between the contact surfaces of the tendon sheath and the flexibility of the rope, are the main difficulties in controlling such manipulators. Most of the existing compensation control methods applicable to double tendon-sheath actuators are offline compensation methods that do not require output feedback, but when the system's motion and configuration changes, it cannot adapt to the drastic changes in the transmission characteristics. Depending on the transmission system, the robotic arm, changes at any time during the working process, and the force sensors and torque sensors that cannot be applied to the joints of the robot, so a real-time position compensation control method based on flexible cable deformation is proposed. A double tendon-sheath transmission model is established, a double tendon-sheath torque transmission model under any load condition is derived, and a semi-physical simulation experimental platform composed of a motor, a double tendon-sheath transmission system and a single articulated arm is established to verify the transfer model. Through the signal feedback of the end encoder, a real-time closed-loop feedback system was established, thus that the system can still achieve the output to follow the desired torque trajectory under the external interference.


Assuntos
Procedimentos Cirúrgicos Robóticos/métodos , Algoritmos , Sistemas Computacionais , Desenho de Equipamento , Torque
15.
ACS Appl Mater Interfaces ; 12(4): 4520-4530, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31895533

RESUMO

Proton exchange membrane (PEM) water electrolysis is a promising energy storage solution by electrochemically splitting water into hydrogen fuel and oxygen. However, the sluggish kinetics, high operating potential, and corrosive acidic environment during the oxygen evolution reaction (OER) require the use of scarce and costly Ir-based oxides, tremendously hampering its large-scale commercialization. Hence, developing active and stable anode catalysts with reduced precious-metal usage is desperately essential. For the first time, we report a group of Y2-xBaxRu2O7 pyrochlore oxides and employ them in acid OER and PEM electrolyzers. We reveal the mechanism for the promoted OER performance of Ba-doped Y2Ru2O7 in which partially replacing Y3+ by Ba2+ in Y2Ru2O7 greatly facilitates the hole-doping effect, which generates massive oxygen vacancy and multivalence of Ru5+/Ru4+, thus boosting the OER performance of Y2-xBaxRu2O7. This work provides an effective method and paradigm for improving the electrocatalytic property of pyrochlore oxides.

16.
Ann Hum Genet ; 83(5): 318-324, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30895616

RESUMO

PURPOSE: China harbors 56 ethnic groups and Han accounts for >92% of the total Chinese population. We investigated the frequencies of 15 autosomal short tandem repeat (STR) loci in the Han population of the Ili Kazakh Autonomous Prefecture with the aim of expanding the available population information in human genetics databases and for forensic DNA analysis. SUBJECTS AND METHODS: We explored the genetic characteristics of 15 autosomal STR loci in 552 unrelated Chinese Han individuals from Ili Kazakh Autonomous Prefecture, Northwestern China using the AmpFISTR Identifiler PCR Amplification Kit. Moreover, phylogenetic analysis was performed between the Han population and other relevant populations based on the autosomal STR genotyping. The neighbor-joining tree and principle component analysis were generated based on the Nei's standard genetic distance and allelic frequencies, respectively. RESULTS: A total of 171 alleles were observed among 552 unrelated individuals and allelic frequencies ranged from 0.5145 to 0.0009. The combined power of discrimination and combined power of exclusion of the 15 autosomal STR loci were 0.9999999999999999964 and 0.999998243616671, respectively. CONCLUSIONS: Population comparison revealed that the Ili Han population were lining up together with other Han populations in China while showing significant differences from other Chinese and worldwide populations.


Assuntos
Povo Asiático/genética , Genética Populacional , Repetições de Microssatélites , Alelos , China , Etnicidade/genética , Frequência do Gene , Humanos , Filogenia , Análise de Componente Principal
17.
BMC Med Genet ; 20(1): 28, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709340

RESUMO

BACKGROUND: Rs189037 (G > A) is a functional single nucleotide polymorphism (SNP) in the Ataxia-telangiectasia mutated (ATM) gene that may be associated with the risk of cancer. We performed a meta-analysis to determine whether rs189037 polymorphism influences the occurrence of cancer and examined the relationship between this SNP and the etiology of cancer. METHODS: Case-control studies were retrieved from literature databases in accordance with established inclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between rs189037 and cancer. Subgroup analysis and sensitivity analysis also were performed. RESULTS: After inclusion criteria were met, fifteen studies-comprising 8660 patients with cancer (cases) and 9259 controls-were included in this meta-analysis. Summary results indicated that an association was found between rs189037 and cancer risk. In the dominant model, the pooled OR using a random effects model was 1.207 (95% CI, 1.090-1.337; P < 0.001). The A allele of rs189037 increased the risk of lung cancer, breast cancer, and oral cancer. Results of subgroup analysis by ethnicity indicated that the SNP was associated with the risk of cancer among East Asian and Latino, but not Caucasian. CONCLUSIONS: Results of this meta-analysis suggest that rs189037 is associated with the occurrence of lung cancer, breast cancer, and oral cancer as the risk factor. These data provide possible avenues for future case-control studies related to cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Pulmonares/genética , Masculino , Neoplasias Bucais/genética , Neoplasias/etnologia
18.
Mycorrhiza ; 28(8): 787-793, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29951862

RESUMO

The application of 33P or 32P isotopes to directly trace phosphorus (P) uptake during arbuscular mycorrhizal (AM) symbiosis is limited by the radioactivity of the two P isotopes, especially under field conditions. A potential alternative method for tracing P uptake in plant-soil systems relies on the analysis of the stable oxygen (O) isotopes of ortho-phosphate (Pi); however, little is known about the fate of the P-O bond during Pi uptake in AM symbioses. This study investigated whether the abundance of 18O in Pi extracted from the shoots of maize increased after 18O-labeled Pi added to soil was taken up by either roots of maize or AM extraradical hyphae. A two-compartment culture system, consisting of a root and AM hyphal compartment (RHC, including both roots and AM hyphae) and an AM hyphal compartment (HC, including only hyphae) was designed, and the AM fungus Funneliformis mosseae was used to inoculate the roots of maize. Our results indicated that the abundance of 18O in Pi extracted from the maize shoots increased significantly 3 months after the addition of 18O-labeled Pi to the soil in the pots which only contained roots. The abundance of 18O was much lower than expected, however, which suggests a great majority of 18O in labeled Pi was lost in the soil or during Pi metabolism in the shoots of maize. The abundance of 18O in Pi extracted from the maize shoots did not increase 3 months after 18O-labeled Pi was added to the HC, and therefore, loss of 18O in labeled Pi may also occur during Pi metabolism in AM hyphae. Use of 18O-labeled Pi as a qualitative tracer of P uptake during AM symbiosis appears unfeasible for such a long-term (3 months) experiment, although it should be investigated in a short-term labeling experiment.


Assuntos
Micorrizas/fisiologia , Isótopos de Oxigênio/análise , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Zea mays/metabolismo , Transporte Biológico , Glomeromycota/fisiologia , Raízes de Plantas/microbiologia , Zea mays/microbiologia
19.
ACS Appl Mater Interfaces ; 9(42): 36817-36827, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28975789

RESUMO

Although tremendous efforts have been devoted to the exploration of cost-effective, active, and stable electrochemical catalysts, only few significant breakthroughs have been achieved up to now. Therefore, exploring new catalysts and improving catalyst activity and stability are still major tasks at present. Controllable synthesis of Pt-based alloy nanocrystals with a uniform high-index surface and unique architecture has been regarded as an effective strategy to optimize their catalytic efficiency toward electrochemical reactions. Accordingly, here we present a one-pot facile solvothermal process to synthesize novel unique Cu@CuPt core-shell concave octahedron nanocrystals that exhibit both outstanding activity and long durability. By regulating temperatures during the synthesis process, we were able to control the reduction rate of Cu and Pt ions, which could subsequently lead to the sequential stacking of Cu and Pt atoms. Owing to the concave structure, the as-prepared core-shell nanoparticles hold a high-index surface of {312} and {413}. Such surfaces can provide a high density of atomic steps and terraces, which is suggested to be favorable for electrochemical catalysts. Specifically, the Cu@CuPt core-shell concave octahedron presents 8.6/13.1 times enhanced specific/mass activities toward the methanol oxidation reaction in comparison to those of a commercial Pt/C catalyst, respectively. Meanwhile, the as-prepared catalyst exhibits superior durability and antiaggregation properties under harsh electrochemical conditions. The facile method used here proposes a novel idea to the fabrication of nanocrystals with desired compositional distribution, and the as-prepared product offers exciting opportunities to be applied in direct methanol fuel cells.

20.
Appl Opt ; 55(9): 2399-403, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140580

RESUMO

In this paper a delicately designed double-passing end-pumped Nd:YVO4 rod amplifier is reported that produces 10.2 W average laser output when seeded by a 6 mW Nd:YVO4 microchip laser at a repetition rate of 70 kHz with pulse duration of 90 ps. A pulse peak power of ∼1.6 MW and pulse energy of ∼143 µJ is achieved. The beam quality is well preserved by a double-passing configuration for spherical-aberration compensation. The laser-beam size in the amplifier is optimized to prevent the unwanted damage from the high pulse peak-power density. This study provides a simple and robust picosecond all-solid-state master oscillator power amplifier system with both high peak power and high beam quality, which shows great potential in the micromachining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA