Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Vaccine ; 42(8): 1973-1979, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38388236

RESUMO

BACKGROUND: There has been no data on the immunogenicity and safety of the 4th booster dose of the sIPV immunization in 18-24 months old children in post-marketing studies of large cohort providing with robust results. METHOD: In a phase Ⅳ randomized, double-blinded clinical trial, 1200 participants aged 2 months were immunized with three consecutive doses of sIPV at 2, 3, and 4 months old to complete primary immunization. Out of the 1200 participants, 1129 received the 4th dose of sIPV as booster immunization. Immunogenicity was evaluated in 1100 participants. RESULTS: Seropositive rates of the anti-poliovirus type 1, 2, and 3 neutralizing antibodies were 99.9 %, 98.0 %, 98.2 %, respectively, with GMTs of 557.0, 146.1, 362.0 one year after primary vaccination. After booster vaccination between 18 and 24 months old, the seropositive rates for 3 types all reached 100.0 %, with GMTs of 8343.6, 5039.6, 5492.0, respectively. Particularly for the anti-poliovirus type 2 antibody, the GMT was 230.4 after primary immunization, maintained to 146.1 one year after primary immunization, and increased to as high as 5039.6 after booster vaccination. The GMT ratios between each batch groups after booster immunization were between 0.67 and 1.50, meeting the immunological equivalence criteria. The incidence rate of adverse reaction was 23.0 %, which was comparable to those in the phase Ⅲ trial but had a lower incidence. Furthermore, no SUSAR was reported in this study. INTERPRETATION: In conclusion, as the anti-poliovirus antibodies gradually waned one year post sIPV primary vaccination, especially the type 2 antibody waned to a very low level, suggesting the importance of the booster immunization for children at the age of 18-24 months old. The booster shot can greatly enhance the antibody level and protect children from the potential risk of infection with WPV and VDPV by supplementing the anti-poliovirus type 2 immunity gap in the current real world. Clinic Trial Registration. NCT04224519.


Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Lactente , Pré-Escolar , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Anticorpos Antivirais , Vacina Antipólio de Vírus Inativado/efeitos adversos , China , Imunogenicidade da Vacina
2.
Vaccines (Basel) ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400200

RESUMO

BACKGROUND: An inactivated poliomyelitis vaccine made from Sabin strains (sIPVs) has widely been used in China since 2015. However, the quantitative data on the instant and persistent inhibition effects of maternal poliovirus antibodies on the immune response to sIPV priming and booster vaccination have not been available yet. OBJECTIVE: In this study, we aim to explore and quantify the instant and persistent inhibition effect of maternal poliovirus antibodies on the immune response elicited by sIPV primary and booster vaccination. METHODS: The immunogenicity data consisting of the days 0 and 30 after the prime and booster vaccination of the sIPV in a phase IV trial were pooled for a quantitative analysis of the inhibition effect of maternal poliovirus antibody. The geometric mean ratio (GMR) was calculated using linear regression models, representing that every 2-fold higher maternal poliovirus antibody titer may result in a (1-GMR) lower postimmunization antibody titer. RESULTS: The GMRs for poliovirus types 1, 2, and 3 were 0.79 (0.77-0.82), 0.85 (0.81-0.89), and 0.87 (0.83-0.91) at 30 days after the priming series, 0.86 (0.83-0.89), 0.81 (0.76-0.85), and 0.86 (0.80-0.93) at one year after the priming series, and 0.96 (0.94-0.99), 0.89 (0.86-0.93), and 0.98 (0.93-1.03) at 30 days after the booster dose. The inhibition effect continued to exist until the booster dose 1 year later, and such a persistent inhibition effect was almost attenuated for poliovirus types 1 and 3, and partly reduced for type 2 at 30 days after the booster dose. CONCLUSION: A wider interval between the four sIPV doses might be a consideration for reducing the effect of maternal antibodies and subsequently eliciting and maintaining higher antibody levels to protect against poliovirus transmission and infection at the final stage of polio eradication in the global world. This study's clinical trial registry number is NCT04224519.

3.
NPJ Vaccines ; 9(1): 50, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424078

RESUMO

Trivalent oral poliovirus vaccine (tOPV) has been withdrawn and instead an inactivated poliovirus vaccine (IPV) and bivalent type 1 and type 3 OPV (bOPV) sequential immunization schedule has been implemented since 2016, but no immune persistence data are available for this polio vaccination strategy. This study aimed to assess immune persistence following different polio sequential immunization schedules. Venous blood was collected at 24, 36, and 48 months of age from participants who had completed sequential schedules of combined IPV and OPV in phase III clinical trials. The serum neutralizing antibody titers against poliovirus were determined, and the poliovirus-specific antibody-positive rates were evaluated. A total of 1104 participants were enrolled in this study. The positive rates of poliovirus type 1- and type 3-specific antibodies among the sequential immunization groups showed no significant difference at 24, 36, or 48 months of age. The positive rates of poliovirus type 2-specific antibody in the IPV-IPV-tOPV group at all time points were nearly 100%, which was significantly higher than the corresponding rates in other immunization groups (IPV-bOPV-bOPV and IPV-IPV-bOPV). Immunization schedules involving one or two doses of IPV followed by bOPV failed to maintain a high positive rate for poliovirus type 2-specific antibody.

4.
Int J Gen Med ; 16: 5947-5953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115968

RESUMO

Background: We study the characteristics and outcomes in lung cancer patients with COVID-19 Omicron variant infection. Methods: Hospitalized lung cancer patients with advanced-stage disease and laboratory-confirmed COVID-19 Omicron infection were included. Pneumonitis involving at least 25% of lung parenchyma on CT scans, accompanied by symptoms and oxygen saturation below 93%, were criteria for enrollment. Pneumonitis severity was graded using CTCAE v5.0. Treatment included Paxlovid, prednisolone, anticoagulation, and ventilation. Initial data, radiographic findings, and outcomes were compared. Logistic regression was employed to determine risk factors for in-hospital mortality. Results: Fifteen patients (median age: 65 years; 80.0% males) were included. 73.3% improved and were discharged, 20.0% died, and 6.7% remained intubated. Initial symptoms included cough (100.0%), fever (73.3%), and shortness of breath (53.3%). Symptoms resolved in discharged patients. Median fever duration was 3.5 days, and respiratory symptom recovery took 26 days. Three patients died due to respiratory failure from Omicron pneumonia. Lower oxygen saturation, reduced lymphocyte/neutrophil ratio on day 7, and diffuse bilateral lung lesions were poor prognostic factors. Conclusion: This study underscores the importance of prompt intervention and early diagnosis for lung cancer patients infected with the COVID-19 Omicron variant. Lower oxygen saturation, decreased lymphocyte/neutrophil ratio on day 7, and diffuse lung lesions on CT scans were associated with worse outcomes. Clinicians should prioritize timely and comprehensive management to improve survival rates in this population.

5.
EClinicalMedicine ; 64: 102151, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745024

RESUMO

Background: In a previous phase 3 clinical trial, we showed that an inactivated poliovirus vaccine derived from the Sabin strain (sIPV) can induce neutralising antibodies against currently circulating and reference wild poliovirus strains. However, the immune persistence of sIPV remains to be evaluated. Methods: In this study, 400 participants who were eligible for an early phase 3 clinical trial (Jan 1, 2012-Aug 31, 2014) in Pingle County, GuanXi Province, China, were initially involved in one site. Of the participants in the previous phase 3 clinical trial, sera of 287, 262, 237, and 207 participants were sampled at the ages of 4, 6, 8, and 10 years, respectively, after the prime-boost regimen. Neutralising antibodies against attenuated Sabin strains were detected using these serum samples to determine immune persistence. The serum neutralising antibodies titre of 1:8 against poliovirus types 1, 2, and 3 is considered to be a seroprotection level for polio. The trial is registered at ClinicalTrials.gov, NCT01510366. Findings: The protective rates against poliovirus types 1, 2, and 3 in the sIPV group were all 100% at 10 years after the booster immunisation, compared with 98.1%, 100%, and 97.1%, respectively, in the wIPV control group after 10 years. After the booster at 18 months, the geometric mean titres (GMTs) of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 13,265.6, 7856.7, and 6432.2, respectively, and the GMTs in the control group (inoculated with inactivated poliovirus vaccine derived from wild strain (wIPV)) were 3915.6, 2842.6, and 4982.7, respectively. With increasing time after booster immunisation, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 gradually decreased in both the sIPV and wIPV groups. At the age of ten years, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 452.3, 392.8, and 347.5, respectively, and the GMTs in the wIPV group 108.5, 154.8, and 229.3, respectively, which were still at a higher-than-protective level (1:8). Interpretation: Both sIPV and wIPV maintained sufficiently high immune persistence against poliovirus types 1, 2, and 3 for at least 10 years after booster immunisation. Funding: Yunnan Provincial Science and Technology Department, the Bill and Melinda Gates Foundation, the National High-tech Research and Development Program, the National International Science and Technology Cooperation Project, the Yunnan Application Basic Research Project, the Innovation Team Project of Xie He, the Yunnan International Scientific and Technological Cooperation Project, and the Medical and Technology Innovation Project of Xie He.

6.
Food Chem ; 427: 136681, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392622

RESUMO

Traditional organic solvent extractions of tea saponins have many drawbacks. This study aimed to establish an environment-friendly and efficient technology based on deep eutectic solvents (DESs) to extract tea saponins from Camellia oleifera seed meal. The solvent consisting of choline chloride and methylurea was screened as optimal DES. Under the optimal extraction conditions obtained by response surface methodology, the extraction yield of tea saponins reached 94.36 mg/g, which increased by 27% compared with ethanol extraction, while the extraction time was reduced by 50%. Analysis of UV, FT-IR, and UPLC-Q/TOF-MS indicated tea saponins did not alter during DES extraction. Surface activity and emulsification evaluation showed that extracted tea saponins could reduce interfacial tension at the oil-water interface with excellent foamability and foam stability, and they could form nanoemulsions (d32 < 200 nm) with excellent stability. This study provides a suitable approach for the efficient extraction of tea saponins.


Assuntos
Camellia , Saponinas , Solventes Eutéticos Profundos , Espectroscopia de Infravermelho com Transformada de Fourier , Solventes , Chá , Sementes
7.
J Epidemiol Glob Health ; 12(3): 292-303, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35857268

RESUMO

OBJECTIVE: Rotaviruses and noroviruses are important causes of acute gastroenteritis in children. While previous studies in China have mainly focused on rotavirus, we investigated the incidence of norovirus in addition to rotavirus in Southwestern China. METHODS: From January 2018 to December 2020, cases of rotavirus or norovirus infections among children under five ages with acute gastroenteritis were evaluated retrospectively. RESULTS: The detection rate of rotavirus was 24.5% (27,237/111,070) and norovirus was 26.1% (4649/17,797). Among 17,113 cases submitted for dual testing of both rotavirus and norovirus, mixed rotavirus/norovirus infections were detected in 5.0% (859/17,113) of cases. While there was no difference in norovirus incidence in outpatient compared to hospitalized cases, rotavirus was detected two times more in outpatients compared to hospitalized cases (26.6% vs.13.6%; P < 0.001). Both rotavirus and norovirus infections peaked in children aged 12-18 months seeking medical care with acute gastroenteritis (35.6% rotavirus cases; 8439/23,728 and 32.5% norovirus cases; 1660/5107). Rotavirus infections were frequent between December and March of each year while norovirus was detected earlier from October to December. Our results showed significant correlation between virus detection and environmental factors such as average monthly temperature but not relative humidity. In addition, we observed a reduction in the detection rates of rotavirus and norovirus at the beginning of the SARS-CoV-2 pandemic in 2020. CONCLUSION: Our results indicate that rotavirus and norovirus are still important viral agents in pediatric acute gastroenteritis in Southwestern China.


Assuntos
COVID-19 , Infecções por Caliciviridae , Coinfecção , Gastroenterite , Norovirus , Infecções por Rotavirus , Rotavirus , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Coinfecção/epidemiologia , Fezes , Gastroenterite/epidemiologia , Humanos , Lactente , Estudos Retrospectivos , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/epidemiologia , SARS-CoV-2
9.
Vaccine ; 40(33): 4709-4715, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753838

RESUMO

BACKGROUND: To evaluate the immunogenicity and safety of simultaneous administration of the enterovirus 71 (EV71) vaccine with the measles and rubella (MR) combined vaccine. METHODS: In this phase 4, randomized, open-label and noninferiority study, a total of 680 infants aged 8 months were enrolled and assigned to the simultaneous administration group (infants received the first dose of EV71 vaccine and MR vaccine on Day 0, and the second dose of EV71 vaccine on Day 28), or the separate administration groups (EV71 group: infants received two doses of EV71 vaccine on Day 0 and Day 28, respectively; MR group: infants received MR vaccine on Day 0). Blood sample was obtained on Day 0 and Day 56 to measure antibody responses to each of the antigens in terms of antibody titer or concentration, respectively. Local and systemic adverse reactions (ARs) and other adverse events (AEs) following each dose were monitored and compared among groups. RESULTS: After vaccination, simultaneous administration group showed similar seroconversion rates of antibody against EV71(97.9%), measles (97.4%), and rubella (94.3%) compared to EV71 group (99.6% for anti-EV71) or MR group (98.4% for anti-measles and 98.9% for anti-rubella, respectively). Noninferiority was demonstrated for all antibodies as the lower limits of two-sided 97.5% confidence intervals (CIs) of the difference in seroconversion rates between simultaneous administration group and separate administration groups were above the predefined margin of -10%. Additionally, the adverse reaction rates were comparable among groups (54.4% in the simultaneous group versus 43.9% in the MR group versus 52.6% in the EV71 group). CONCLUSION: Antibody responses induced by simultaneous administration of EV71 vaccine with MR vaccine were robust and noninferior to those by single administration alone. Like the previous findings by single administration alone, simultaneous administration demonstrated comparable reactogenicity and safety profiles.


Assuntos
Enterovirus Humano A , Enterovirus , Sarampo , Rubéola (Sarampo Alemão) , Anticorpos Antivirais , Humanos , Imunogenicidade da Vacina , Lactente , Sarampo/prevenção & controle , Vacina contra Sarampo , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/prevenção & controle , Vacinas de Produtos Inativados
10.
Hum Vaccin Immunother ; 18(1): 2041944, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35258415

RESUMO

OBJECTIVE: To evaluate the safety of concomitantly administering inactivated poliomyelitis vaccine produced from Sabin strains (sIPVs) with other vaccines. METHODS: A descriptive analysis was carried out on adverse events following immunization (AEFI) based on the administration of sIPV alone or concomitant with other vaccines (from 2015 to 2020) using data from the national AEFI surveillance system of China (CNAEFIS). All adverse reactions (ADRs) of the concomitant immunization were coded using a medical dictionary for regulatory activities (MedDRA) before comparison. RESULTS: The CNAEFIS reported a total of 9130 sIPV-related AEFI cases, including 6842 AEFI cases collected after immunization with sIPV alone and 2288 AEFI cases collected after immunization of sIPV concomitant with other vaccines. The combination of sIPV with diphtheria, tetanus and pertussis vaccine (DTaP) was correlated with the highest frequency of AEFI, which accounted for 53.50% of all 2288 AEFI cases. After MedDRA-based coding, the most frequent ADR was fever (70.18%), followed by erythema and swelling at the injection site (6.95%), induration at the injection site (3.85%), dermatitis allergy (3.56%) and urticaria (1.55%). A statistically significant difference (P < .001) was found between sIPV immunization and sIPV immunization concomitant with other vaccines for general reactions (95.36% and 93.22%, respectively) and abnormal reactions (4.64% and 6.78%, respectively). CONCLUSION: No new safety signal is found for sIPV administered concomitantly, although its administration with other vaccines may increase the occurrence of abnormal reactions. Vaccine manufacturers should focus on the safety of administering sIPV with DTaP and carry out relevant clinical studies when necessary.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Difteria , Poliomielite , Tétano , Humanos , Imunização , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , Tétano/prevenção & controle , Vacinação
11.
Mol Ther Methods Clin Dev ; 23: 108-118, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34462721

RESUMO

Because of the relatively limited understanding of coronavirus disease 2019 (COVID-19) pathogenesis, immunological analysis for vaccine development is needed. Mice and macaques were immunized with an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine prepared by two inactivators. Various immunological indexes were tested, and viral challenges were performed on day 7 or 150 after booster immunization in monkeys. This inactivated SARS-CoV-2 vaccine was produced by sequential inactivation with formaldehyde followed by propiolactone. The various antibody responses and specific T cell responses to different viral antigens elicited in immunized animals were maintained for longer than 150 days. This comprehensive immune response could effectively protect vaccinated macaques by inhibiting viral replication in macaques and substantially alleviating immunopathological damage, and no clinical manifestation of immunopathogenicity was observed in immunized individuals during viral challenge. This candidate inactivated vaccine was identified as being effective against SARS-CoV-2 challenge in rhesus macaques.

12.
Emerg Microbes Infect ; 10(1): 1112-1115, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34057040

RESUMO

Neutralizing antibodies in the subjects of an inactivated SARS-CoV-2 vaccine clinical trial showed a decreasing trend over months. An investigation studying the third immunization suggested that the waning of neutralizing antibodies in individuals administered two doses of inactivated vaccine does not mean the disappearance of immunity.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunização Secundária , Memória Imunológica , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/administração & dosagem , Humanos , Pessoa de Meia-Idade , Vacinação/estatística & dados numéricos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
13.
Hum Vaccin Immunother ; 17(8): 2560-2567, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33848232

RESUMO

The switch from using only trivalent oral polio vaccine (tOPV) to sequential schedules combining inactivated poliovirus vaccine (IPV) and bivalent oral polio vaccine (bOPV) for polio vaccination will cause changes to mucosal immunity against polio in infants, which plays an important role in preventing the poliovirus spread. Here, we analyzed mucosal immunity against poliovirus in the intestine during different sequential vaccination schedules. We conducted clinical trials in Guangxi Province, China on 1,200 2-month-old infants who were randomly assigned to one of three vaccination schedule groups: IPV-bOPV-bOPV, IPV-IPV-tOPV, and IPV-IPV-bOPV, with vaccine doses administered at 8, 12, and 16 weeks of age. Stool samples were collected from 10% of participants in each group before administration of the second vaccine doses and at 1, 2, and 4 weeks after the administrations of the second and third vaccine doses. Immunoglobulin A (IgA) in the stool samples was measured to analyze the mucosal immune response in the intestine. Because of the absence of poliovirus type 2 in bOPV, the vaccination schedule of IPV-IPV-bOPV did not sufficiently raise intestinal mucosal immunity against poliovirus type 2, although some cross-immunity was seen. The level of intestinal mucosal immunity was related to shedding status; shedders could produce intestinal mucosa IgA more quickly. The intestinal mucosal immunity level was not related to serum neutralizing antibody level. In the combined sequential vaccination schedule of IPV and bOPV, the risk of circulating vaccine-derived poliovirus type 2 (cVDPV2) may be increased owing to insufficient intestinal mucosal immunity against poliovirus type 2.


Assuntos
Poliomielite , Poliovirus , Anticorpos Antivirais , China , Humanos , Imunidade nas Mucosas , Esquemas de Imunização , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral
14.
Vaccine ; 39(20): 2746-2754, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33875266

RESUMO

BACKGROUND: This study examined the safety and immunogenicity of an inactivated SARS-CoV-2 vaccine. METHOD: In a phase I randomized, double-blinded, placebo-controlled trial involving 192 healthy adults 18-59 years old, two injections of three doses (50 EU, 100 EU, 150 EU) of an inactivated SARS-CoV-2 vaccine or placebo were administered intramuscularly at a 2- or 4-week interval. The safety and immunogenicity of the vaccine were evaluated. RESULTS: Vaccination was completed in 191 subjects. Forty-four adverse reactions occurred within 28 days, most commonly mild pain and redness at the injection site or slight fatigue. At days 14 and 28, the seroconversion rates were 87.5% and 79.2% (50 EU), 100% and 95.8% (100 EU), and 95.8% and 87.5% (150 EU), respectively, with geometric mean titers (GMTs) of 18.1 and 10.6, 54.5 and 15.4, and 37.1 and 18.5, respectively, for the schedules with 2-week and 4-week intervals. Seroconversion was associated with synchronous upregulation of antibodies against the S protein, N protein and virion and a cytotoxic T lymphocyte (CTL) response. No cytokines and immune cells related to immunopathology were observed. Transcriptome analysis revealed the genetic diversity of immune responses induced by the vaccine. INTERPRETATION: In a population aged 18-59 years in this trial, this inactivated SARS-CoV-2 vaccine was safe and immunogenic. TRIAL REGISTRATION: CTR20200943 and NCT04412538.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas , Adolescente , Adulto , Anticorpos Antivirais , China , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Pessoa de Meia-Idade , SARS-CoV-2 , Adulto Jovem
15.
Ann Transl Med ; 9(3): 253, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708880

RESUMO

BACKGROUND: A comparative analysis of the immunogenicity and safety of different poliovirus immunization schedules in Chinese infants is imperative to guide the administration of efficient strategies for the eradication of poliomyelitis. METHODS: A post hoc analysis was conducted with the data from two poliovirus vaccine clinical trials involving a combined total of 2,400 infants aged 60-90 days. Trivalent oral poliovirus vaccine (tOPV), bivalent oral poliovirus vaccine (bOPV), Sabin strain-based inactivated poliovirus vaccine (sIPV), and conventional inactivated poliovirus vaccine (cIPV) were used in different schedules, the immunogenicity and safety of which were compared 28 days after the last of three doses. RESULTS: In a per-protocol set analysis, the tOPV-tOPV-tOPV schedule induced seroconversion in 99.1%, 98.2%, and 96.0% of the inoculated infants for poliovirus type I, II, and III, respectively. The seroconversions for poliovirus types I and III were each almost 100% after immunization with the cIPV-bOPV-bOPV, sIPV-sIPV-bOPV, cIPV-cIPV-bOPV, sIPV-sIPV-tOPV, cIPV-cIPV-tOPV, or sIPV-bOPV-bOPV schedule. However, the schedules that used one IPV dose followed by two (poliovirus type I and III) bOPV doses failed to induce high-level immunity against type II poliovirus. IPV-related schedules were associated with a slightly higher incidence of adverse events (AEs). CONCLUSIONS: If the capacity of IPV can be increased, two or more doses of IPV should be administered before vaccination with bOPV in a sequential schedule to improve immunity against type II poliovirus.

16.
Vaccine ; 39(9): 1463-1471, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487470

RESUMO

As a recently launched novel vaccine used as one of the vaccines for the final eradication of polios worldwide, complete data on the consistency and immunogenicity characteristics of the inactivated poliomyelitis vaccine made from the Sabin strain (sIPV) and its safety in large-scale populations are required to support the future use of this vaccine worldwide. A phase IV clinical trial was conducted to perform an immunogenicity evaluation of lot-to-lot consistency of three commercial batches of sIPV in 1200 infants and to investigate the vaccine's safety on a large-scale in 20,019 infants for active monitoring and 29,683 infants for passive monitoring through the Adverse Event Following Immunization (AEFI) reporting system in China. In the immunogenicity evaluation, the average seroconversion rates for type I, type II and type III of the three groups were 99.83%, 98.93% and 99.44%, respectively. No differences in the seroconversion rate and the GMT ratios were noted in the pair-to-pair comparisons. In the large-scale safety evaluation, most adverse reactions occurred 0-30 days after the first doses, and the common local and systemic reactions were similar to those in the phase III clinical trial, with low incidence in both activated and passive monitoring. In conclusion, sIPV exhibits good lot-to-lot consistency and safety in large-scale populations; thus, it is qualified to serve as one of the vaccines for use in eradicating all wild and vaccine-derived polioviruses worldwide in the near future. Clinic Trial Registration. NCT04224519 and NCT04220515.


Assuntos
Poliomielite , Vacina Antipólio Oral , Anticorpos Antivirais , China , Humanos , Imunogenicidade da Vacina , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio Oral/efeitos adversos , Vacinação
17.
Clin Infect Dis ; 73(11): e3949-e3955, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33165503

RESUMO

BACKGROUND: We evaluated an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine for immunogenicity and safety in adults aged 18-59 years. METHODS: In this randomized, double-blinded, controlled trial, healthy adults received a medium dose (MD) or a high dose (HD) of the vaccine at an interval of either 14 days or 28 days. Neutralizing antibody (NAb) and anti-S and anti-N antibodies were detected at different times, and adverse reactions were monitored for 28 days after full immunization. RESULTS: A total of 742 adults were enrolled in the immunogenicity and safety analysis. Among subjects in the 0, 14 procedure, the seroconversion rates of NAb in MD and HD groups were 89% and 96% with geometric mean titers (GMTs) of 23 and 30, respectively, at day 14 and 92% and 96% with GMTs of 19 and 21, respectively, at day 28 after immunization. Anti-S antibodies had GMTs of 1883 and 2370 in the MD group and 2295 and 2432 in the HD group. Anti-N antibodies had GMTs of 387 and 434 in the MD group and 342 and 380 in the HD group. Among subjects in the 0, 28 procedure, seroconversion rates for NAb at both doses were both 95% with GMTs of 19 at day 28 after immunization. Anti-S antibodies had GMTs of 937 and 929 for the MD and HD groups, and anti-N antibodies had GMTs of 570 and 494 for the MD and HD groups, respectively. No serious adverse events were observed during the study period. CONCLUSIONS: Adults vaccinated with inactivated SARS-CoV-2 vaccine had NAb as well as anti-S/N antibody and had a low rate of adverse reactions. CLINICAL TRIALS REGISTRATION: NCT04412538.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina
19.
Hum Vaccin Immunother ; 16(10): 2449-2455, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32186960

RESUMO

To investigate whether the TNF-α, IL-2, IL-4 and IL-10 genes contribute to variations in vaccine-induced immune responses after immunization with the inactivated Japanese encephalitis vaccine (IJEV), a total of 369 individuals who received the IJEV were enrolled. Based on Japanese encephalitis virus (JEV) neutralization antibodies (NAbs), the individuals were divided into seropositive (SP) and seronegative (SN) groups. Then, 17 SNPs in the TNF-α, IL-2, IL-4 and IL-10 genes were genotyped using the TaqMan method. Although there was no association of the TNF-α, IL-2, IL-4 and IL-10 genes with JEV seropositivity triggered by JEV vaccination when all the individuals in the SP and SN groups were compared, differences were observed in a subgroup analysis. In the male group, rs2243291 in the IL-4 gene showed a difference between the JEV SP and SN groups with the overdominant model (P = .045), and the C/G genotypes conferred more JEV seropositivity (OR = 1.87; 95% CI: 1.01-3.49); the CT genotype of rs3093726 in the TNF-α gene showed higher JEV NAbs geometric mean titer (GMT) than the TT genotype (P = .018, CT: 1.677 ± 0.144 vs TT: 1.271 ± 0.039). Furthermore, the rs1800629 genotype in the TNF-α gene and the rs1800896 genotype in the IL-10 gene exhibited a trend of association with JEV seropositivity in the female group, but the difference was not significant. The present study suggested that the polymorphisms in the cytokine genes could be associated with sex-specific JEV NAbs seroconversion. However, more samples should be studied, and further functional verification should be performed.


Assuntos
Formação de Anticorpos , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Anticorpos Antivirais , Encefalite Japonesa/genética , Encefalite Japonesa/prevenção & controle , Feminino , Haplótipos , Humanos , Interleucina-10/genética , Interleucina-2/genética , Interleucina-4/genética , Vacinas contra Encefalite Japonesa/imunologia , Masculino , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/genética
20.
Clin Infect Dis ; 71(9): 2421-2427, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734699

RESUMO

BACKGROUND: Evaluation of a licensed inactivated enterovirus type 71 (EV71) vaccine is needed in a phase IV study with a large population to identify its effectiveness and safety for further application. METHODS: An open-label, controlled trial involving a large population of 155 995 children aged 6-71 months was performed; 40 724 were enrolled in the vaccine group and received 2 doses of inactivated EV71 vaccine at an interval of 1 month, and the remaining children were used as the control group. The EV71-infected cases with hand, foot, and mouth disease were monitored in the vaccine and control groups during a follow-up period of 14 months since the 28th day postinoculation through the local database of the Notifiable Infectious Diseases Network. The effectiveness of the vaccine was estimated by comparing the incidence density in the vaccine group versus that in the control group based upon EV71-infected patients identified via laboratory testing. In parallel, the active and passive surveillance for safety of the vaccine was conducted by home or telephone visits and by using the Adverse Event Following Immunization (AEFI) system, respectively. RESULTS: An overall level of 89.7% (95% confidence interval, 24.0-98.6%) vaccine effectiveness against EV71 infection and a 4.58% rate of reported adverse events were observed. Passive surveillance demonstrated a 0.31% rate of reported common minor reactions. CONCLUSIONS: The clinical protection and safety of the EV71 vaccine were demonstrated in the immunization of a large population. CLINICAL TRIALS REGISTRATION: NCT03001986.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Adolescente , Adulto , Idoso , Anticorpos Antivirais , Criança , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA