Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 876058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033850

RESUMO

Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections.

2.
Food Sci Nutr ; 10(2): 422-435, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154679

RESUMO

Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.

3.
Food Sci Nutr ; 8(9): 4843-4856, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994946

RESUMO

The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.

4.
J Dairy Sci ; 98(8): 5091-101, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26074237

RESUMO

Although several studies have reported PCR assays for distinguishing Cronobacter sakazakii from other species in the genus, reports regarding assay sensitivity and specificity, as well as applications for food testing, are lacking. Hence, the objective of this study was to develop a sensitive and reliable PCR-based method for detection of C. sakazakii by screening for specific target genes. The genome sequence of C. sakazakii in the GenBank database was compared with that of other organisms using BLAST. Thirty-eight DNA fragments unique to C. sakazakii were identified, and primers targeting these sequences were designed. Finally, 3 primer sets (CS14, CS21, and CS38) were found to be specific for C. sakazakii by PCR verification. The detection limit of PCR assays using the 3 pairs of primers was 1.35 pg/µL, 135 fg/µL, and 135 fg/µL, respectively, for genomic DNA, and 5.5×10(5), 5.5×10(3), 5.5×10(3) cfu/mL, respectively, using pure cultures of the bacteria, compared with 13.5 pg/µLand 5.5×10(5) cfu/mLfor primer set SpeCronsaka, which has been previously described. Cronobacter sakazakii were detected in artificially contaminated powdered infant formula (PIF) by PCR using primer sets CS21 and CS38 after 8h of enrichment. The detection limit was 5.5×10(-1) cfu/10g of PIF. Thus, the PCR assay can be used for rapid and sensitive detection of C. sakazakii in PIF.


Assuntos
Cronobacter sakazakii/genética , Microbiologia de Alimentos , Genoma Bacteriano , Reação em Cadeia da Polimerase/métodos , Biologia Computacional , Primers do DNA/genética , Mineração de Dados , Análise de Sequência de DNA , Especificidade da Espécie
5.
J Agric Food Chem ; 50(10): 2798-801, 2002 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-11982402

RESUMO

Various compositions of 2-hydroxyethacrylate (HEA) and methoxy polyethylene glycol methacrylate (M23G) monomers were irradiated by gamma-rays at low temperature (-78 degrees C) to synthesize polymer carriers for effectively immobilizing yeast cells. The yeast cells were immobilized by cell adhesion onto/in these polymers. The ethanol productivity of immobilized yeast cells with the polymer carriers was higher than that of free cells, increasing by 1-3 times. However, the ethanol productivity of immobilized yeast with the polymer carrier resulting from 7%/7% (HEA/M23G) monomer was low, comparatively. The effect of adding cross-linking reagent (4G) to the low concentration of HEA/M23G monomers on the activity of yeast cells immobilized with the cross-linked carriers by radiation polymerization was investigated. The ethanol productivity of immobilized cells with the carriers, which were cross-linked by adding 3-6% 4G to the low concentration of HEA/M23G monomer, was increased by 20-30%, because the pore size, network structure, and mechanical strength of the polymer carriers was well adjusted and cell leakage from the polymer carriers decreased. The relationship between the ethanol productivity of immobilized yeast cells and the interior structure of polymer carriers is discussed and indicated that the interior structure of polymer carriers is crucial for effective immobilization of yeast cells.


Assuntos
Reagentes de Ligações Cruzadas , Raios gama , Polímeros/química , Saccharomyces , Acrilatos/química , Adesão Celular , Células Imobilizadas , Fenômenos Químicos , Físico-Química , Etanol/metabolismo , Metacrilatos/química , Polietilenoglicóis/química , Saccharomyces/citologia , Saccharomyces/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA