Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38256901

RESUMO

Natural products and especially those from marine organisms are being intensively explored as an alternative to synthetic antibiotics. However, the exact mechanisms of their action are not yet well understood. The molecular masses of components in the hemolymph fraction with MW 50-100 kDa from Rapana venosa were determined using ImageQuant™ TL v8.2.0 software based on electrophoretic analysis. Mainly, three types of compounds with antibacterial potential were identified, namely proteins with MW at 50.230 kDa, 62.100 kDa and 93.088 kDa that were homologous to peroxidase-like protein, aplicyanin A and L-amino acid oxidase and functional units with MW 50 kDa from R. venous hemocyanin. Data for their antibacterial effect on Escherichia coli NBIMCC 8785 were obtained by CTC/DAPI-based fluorescent analysis (analysis based on the use of a functional fluorescence probe). The fluorescent analyses demonstrated that a 50% concentration of the fraction with MW 50-100 kDa was able to eliminate 99% of the live bacteria. The antimicrobial effect was detectable even at a 1% concentration of the active compounds. The bacteria in this case had reduced metabolic activity and a 24% decreased size. The fraction had superior action compared with another mollusc product-snail slime-which killed 60% of the E. coli NBIMCC 8785 cells at a 50% concentration and had no effect at a 1% concentration. The obtained results demonstrate the high potential of the fraction with MW 50-100 kDa from R. venosa to eliminate and suppress the development of Escherichia coli NBIMCC 8785 bacteria and could be applied as an appropriate component of therapeutics with the potential to replace antibiotics to avoid the development of antibiotic resistance.

2.
Biomedicines ; 10(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327474

RESUMO

Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA