Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
2.
Genes (Basel) ; 13(9)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36140817

RESUMO

Cassava starch is a widely used raw material for industrial production. South Chinese cassava cultivar 8 (Manihot esculenta Crantz cv. SC8) is one of the main locally planted cultivars. In this study, an efficient transformation system for cassava SC8 mediated with Agrobacterium strain LBA4404 was presented for the first time. Cassava friable embryogenic calli (FECs) were transformed through the binary vector pCAMBIA1304 harboring GUS- and GFP-fused genes driven by the CaMV35S promoter. The transformation efficiency was increased in the conditions of Agrobacterium strain cell infection density (OD600 = 0.65), 250 µM acetosyringone induction, and agro-cultivation with wet FECs for 3 days in dark. Based on the optimized transformation protocol, approximately 120-140 independent transgenic lines per mL settled cell volume (SCV) of FECs were created by gene transformation in approximately 5 months, and 45.83% homozygous mono-allelic mutations of the MePDS gene with a YAO promoter-driven CRISPR/Cas9 system were generated. This study will open a more functional avenue for the genetic improvement of cassava SC8.


Assuntos
Manihot , Edição de Genes , Manihot/genética , Amido/metabolismo , Transformação Genética
3.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406926

RESUMO

Alkaline/neutral invertase (A/N-INV) is an invertase that irreversibly decomposes sucrose into fructose as well as glucose and plays a role in plant growth and development, starch synthesis, abiotic stress, and other plant-life activities. Cassava is an economically important starch crop in tropical regions. During the development of cassava tuber roots, A/N-INV activity is relatively high, which indicates that it may participate in sucrose metabolism and starch synthesis. In this study, MeNINV1 was confirmed to function as invertase to catalyze sucrose decomposition in yeast. The optimal enzymatic properties of MeNINV1 were a pH of 6.5, a reaction temperature of 40 °C, and sucrose as its specific catalytic substrate. VB6, Zn2+, and Pb2+ at low concentrations as well as EDTA, DTT, Tris, Mg2+, and fructose inhibited A/N-INV enzymic activity. In cassava, the MeNINV1 gene was mainly expressed in the fibrous roots and the tuber root phloem, and its expression decreased as the tuber root grew. MeNINV1 was confirmed to localize in chloroplasts. In Arabidopsis, MeNINV1-overexpressing Arabidopsis had higher A/N-INV activity, and the increased glucose, fructose, and starch content in the leaves promoted plant growth and delayed flowering time but did not change its resistance to abiotic stress. Our results provide new insights into the biological function of MeNINV1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA