Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res Bull ; 202: 110734, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586426

RESUMO

Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/ß-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/ß-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and ß-catenin, and increased GSK-3ß. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and ß-catenin, and decreasing that of GSK-3ß. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/ß-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Animais , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Transtornos de Estresse Pós-Traumáticos/terapia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Camundongos
2.
Mol Neurobiol ; 58(10): 5272-5288, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34278533

RESUMO

Sleep deprivation (SD) leads to cognitive impairment due to neuroinflammation associated with impaired hippocampal neuronal plasticity and memory processes. Liver X receptors (LXRs), including LXRα and LXRß isoforms, are crucial for synaptic plasticity and neuroinflammation. However, the potential roles of LXRs in the pathogenesis of cognitive impairment induced by SD remain unclear. We revealed that SD resulted in LXRß reduction in the hippocampus, which was associated with upregulated expression of high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)/NF-κB p65, and knockdown of hippocampal LXRß by shRNA (shLXRß) led to cognitive impairment. GW3965, a dual agonist for both LXRα and LXRß, ameliorated SD-induced cognitive impairment by inhibiting microglia activation, suppressing HMGB1/TLR4/NF-κB p65 pathway, and ultimately affecting the hippocampal expression of inflammatory cytokines in SD mice. LXRß knockdown by shLXRß abrogated the GW3965-mediated inhibition of the HMGB1/TLR4/NF-κB p65 pathway, therefore, abolishing the cognitive improvement. Moreover, inhibition of HMGB1 by glycyrrhizin (GLY) synergistic promoted GW3965-mediated anti-inflammation in activated microglia after lipopolysaccharide (LPS)/ATP stimulation and facilitated the cognitive improvement after GW administration by activating LXRß. All the data suggested that GW3965 ameliorated impaired cognition in SD mice by suppressing the HMGB1/TLR4/NF-κB p65 pathway followed LXRß activation. This study correlates a deficit of LXRß in cognitive dysfunction in SD associated with HMGB1 inflammatory pathway in hippocampus, and LXRs may serve as a potential therapeutic target for cognitive impairment with anti-inflammation.


Assuntos
Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Receptores X do Fígado/metabolismo , Doenças Neuroinflamatórias/metabolismo , Privação do Sono/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Benzoatos/administração & dosagem , Benzilaminas/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Relação Dose-Resposta a Droga , Ácido Glicirrízico/administração & dosagem , Hipocampo/efeitos dos fármacos , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Doenças Neuroinflamatórias/tratamento farmacológico , Distribuição Aleatória , Privação do Sono/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA