Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(5): e35859, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306545

RESUMO

This study aimed to determine the potential mechanisms through which long noncoding (Lnc) RNA cancer susceptibility candidate 15 (CASC15) affects hepatocellular carcinoma (HCC). We retrieved HCC RNA-seq and clinical information from the UCSC Xena database. The differential expression (DE) of CASC15 was detected. Overall survival was analyzed using Kaplan-Meier (K-M) curves. Molecular function and signaling pathways affected by CASC15 were determined using Gene Set Enrichment Analysis. Associations between CASC15 and the HCC microenvironment were investigated using immuno-infiltration assays. A differential CASC15-miRNA-mRNA network and HCC-specific CASC15-miRNA-mRNA ceRNA network were constructed. The overexpression of CASC15 in HCC tissues was associated with histological grade, clinical stage, pathological T stage, poor survival, more complex immune cell components, and 12 immune checkpoints. We identified 27 DE miRNAs and 270 DE mRNAs in the differential CASC15-miRNA-mRNA network, and 10 key genes that were enriched in 12 cancer-related signaling pathways. Extraction of the HCC-specific CASC15-miRNA-mRNA network revealed that IGF1R, MET, and KRAS were associated with HCC progression and occurrence. Our bioinformatic findings confirmed that CASC15 is a promising prognostic biomarker for HCC, and elevated levels in HCC are associated with the tumor microenvironment. We also constructed a disease-specific CASC15-miRNA-mRNA regulatory ceRNA network that provides a new perspective for the precise indexing of patients with elevated levels of CASC15.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Microambiente Tumoral/genética
2.
J Pharmacol Exp Ther ; 389(2): 197-207, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37918858

RESUMO

Paclitaxel (PTX) is capable of aggravating radiation-induced pulmonary fibrosis (RIPF), but the mechanism is unknown. Spry2 is a negative regulator of receptor tyrosine kinase-related Ras/Raf/extracellular signal regulated kinase (ERK) pathway. This experiment was aimed at exploring whether the aggravation of RIPF by PTX is related to Spry2. The RIPF model was established with C57BL/6 mice by thoracic irradiation, and PTX was administered concurrently. Western blot was used to detect the expression level of ERK signaling molecules and the distribution of Spry2 in the plasma membrane/cytoplasm. Co-immunoprecipitation (co-IP) and immunofluorescence were used to observe the colocalization of Spry2 with the plasma membrane and tubulin. The results showed that PTX-concurrent radiotherapy could aggravate fibrotic lesions in RIPF, downregulate the content of membrane Spry2, and upregulate the levels of p-c-Raf and p-ERK in lung tissue. It was found that knockdown of Spry2 in fibroblast abolished the upregulation of p-c-Raf and p-ERK by PTX. Both co-IP results and immunofluorescence staining showed that PTX increased the binding of Spry2 to tubulin, and microtubule depolymerizing agents could abolish PTX's inhibition of Spry2 membrane distribution and inhibit PTX's upregulation of Raf/ERK signaling. Both nintedanib and ERK inhibitor were effective in relieving PTX-exacerbated RIPF. Taken together, the mechanism of PTX's aggravating RIPF was related to its ability to enhance Spry2's binding to tubulin, thus attenuating Spry2's negative regulation on Raf/ERK pathway. SIGNIFICANCE STATEMENT: This study revealed that paclitaxel (PTX) concurrent radiation therapy exacerbates radiation-induced pulmonary fibrosis during the treatment of thoracic tumors, which is associated with PTX restraining Spry2 and upregulating the Raf/extracellular signal regulated kinase signaling pathway, and provided drug targets for mitigating this complication.

3.
Medicine (Baltimore) ; 102(30): e34365, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505155

RESUMO

This study aimed to elucidate the prognostic value of the leucine rich repeat containing 1 (LRRC1) gene in hepatocellular carcinoma (HCC) and to determine the effects of high and low LRRC1 expression on mutation and immune cell infiltration. We downloaded HCC mRNA-seq expression and clinical data from University of California Santa Cruz Xena. The expression of LRRC1 was compared between HCC tumor and normal samples. Tumor samples were divided according to high and low LRRC1 expression. Differentially expressed genes between the 2 groups were identified, and function, mutation, and immune cell infiltration were analyzed. Genes associated with immune cells were identified using weighted gene co-expression network analysis, and transcription factors of these genes were predicted. Moreover, a prognostic model was developed and its performance was evaluated. The expression of LRRC1 was upregulated in HCC tissues, and this indicated a poor prognosis for patients with HCC. Differentially expressed genes between high and low LRRC1 expression were significantly enriched in pathways associated with cancer, amino acid metabolism, carbohydrate metabolism, and the immune system. We identified 15 differentially infiltrated immune cells between tumors with high and low LRRC1 expression and 14 of them correlated with LRRC1 gene expression. Weighted gene co-expression network analysis identified 83 immune cell-related genes, 27 of which had prognostic value. Cyclic AMP-response element binding protein regulated annexin A5, matrix metallopeptidase 9, and LRRC1 in the transcription factor regulatory network. Finally, a prognostic model composed of 7 genes were generated, which could accurately predict the prognosis of HCC patients. The LRRC1 gene might serve as a potential immune-associated prognostic biomarker for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Anexina A5 , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas de Transporte , Proteínas de Membrana/genética
4.
Medicine (Baltimore) ; 102(10): e33228, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897679

RESUMO

Abnormal transient receptor potential (TRP) channel function interferes with intracellular calcium-based signaling and causes malignant phenotypes. However, the effects of TRP channel-related genes on hepatocellular carcinoma (HCC) remain unclear. This study aimed to identify HCC molecular subtypes and prognostic signatures based on TRP channel-related genes to predict prognostic risks. Unsupervised hierarchical clustering was applied to identify HCC molecular subtypes using the expression data of TRP channel-related genes. This was followed by a comparison of the clinical and immune microenvironment characteristics between the resulting subtypes. After screening for differentially expressed genes among subtypes, prognostic signatures were identified to construct risk score-based prognostic and nomogram models and predict HCC survival. Finally, tumor drug sensitivities were predicted and compared between the risk groups. Sixteen TRP channel-related genes that were differentially expressed between HCC and non-tumorous tissues were used to identify 2 subtypes. Cluster 1 had higher TRP scores, better survival status, and lower levels of clinical malignancy. Immune-related analyses also revealed higher infiltration of M1 macrophages and higher immune and stromal scores in Cluster 1 than in Cluster 2. After screening differentially expressed genes between subtypes, 6 prognostic signatures were identified to construct prognostic and nomogram models. The potential of these models to assess the prognostic risk of HCC was further validated. Furthermore, Cluster 1 was more distributed in the low-risk group, with higher drug sensitivities. Two HCC subtypes were identified, of which Cluster 1 was associated with a favorable prognosis. Prognostic signatures related to TRP channel genes and molecular subtypes can be used to predict HCC risk.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Nomogramas , Sinalização do Cálcio , Microambiente Tumoral
5.
Gastroenterol Res Pract ; 2021: 6691305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959160

RESUMO

Regulator of calcineurin 1 (RCAN1) is an endogenous protein that is involved in the regulation of the occurrence and progression of a variety of cancers, but currently, people know little about its potential mechanism. This study investigated the function and mechanism of RCAN1 and miR-182-5p in liver cancer cells. In this study, reliable data demonstrated that RCAN1 suppressed cell proliferation, migration, invasion, and cell cycle progression of liver cancer. Additionally, the expression of RCAN1 was noted to be regulated by its upstream regulator miR-182-5p, and miR-182-5p was prominently highly expressed in liver cancer cells. Based on this, it was further proved through cell experiments that miR-182-5p facilitated cell growth of liver cancer through RCAN1 downregulation, showing that RCAN1 may be a fresh biomarker and target for diagnosis and treatment of liver cancer.

6.
Per Med ; 18(2): 97-106, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565325

RESUMO

Objective: This study explored the potential function of miR-452-5p in hepatocellular carcinoma (HCC) and clarified the mechanism underlying HCC progression. Materials & methods: Real-time quantitative PCR was used to detect miR-452-5p and COLEC10 mRNA expression in HCC, western blot was performed to test COLEC10 protein expression. The regulatory mechanism of miR-452-5p/COLEC10 in HCC cells was explored using CCK-8, wound healing assay, Transwell and dual-luciferase reporter assay. Results: MiR-452-5p was greatly upregulated in HCC cells, and it served as an oncogene playing an active role in HCC cell proliferation, migration and invasion. COLEC10 was identified as the target of miR-452-5p in HCC attenuating the promoting effect of miR-452-5p on HCC cells upon overexpression. Conclusion: MiR-452-5p can promote the progression of HCC via targeting COLEC10.


Assuntos
Carcinoma Hepatocelular/patologia , Colectinas/biossíntese , Neoplasias Hepáticas/patologia , MicroRNAs/biossíntese , Biomarcadores Tumorais , Proliferação de Células , Células HEK293 , Humanos , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA