Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19190, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844131

RESUMO

The assembly of large RNA-protein granules occurs in germ cells of many animals and these germ granules have provided a paradigm to study structure-functional aspects of similar structures in different cells. Germ granules in Drosophila oocyte's posterior pole (polar granules) are composed of RNA, in the form of homotypic clusters, and proteins required for germline development. In the granules, Piwi protein Aubergine binds to a scaffold protein Tudor, which contains 11 Tudor domains. Using a super-resolution microscopy, we show that surprisingly, Aubergine and Tudor form distinct clusters within the same polar granules in early Drosophila embryos. These clusters partially overlap and, after germ cells form, they transition into spherical granules with the structural organization unexpected from these interacting proteins: Aubergine shell around the Tudor core. Consistent with the formation of distinct clusters, we show that Aubergine forms homo-oligomers and using all purified Tudor domains, we demonstrate that multiple domains, distributed along the entire Tudor structure, interact with Aubergine. Our data suggest that in polar granules, Aubergine and Tudor are assembled into distinct phases, partially mixed at their "interaction hubs", and that association of distinct protein clusters may be an evolutionarily conserved mechanism for the assembly of germ granules.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Germinativas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Oócitos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Células Sf9 , Domínio Tudor/fisiologia
2.
FEBS Open Bio ; 6(12): 1248-1256, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28203524

RESUMO

Macromolecular complexes and organelles play crucial roles within cells, but their native architectures are often unknown. Here, we use an evolutionarily conserved germline organelle, the germ granule, as a paradigm. In Drosophila embryos, we map one of its interactomes using a novel in vivo crosslinking approach that employs two interacting granule proteins and determines their common neighbor molecules. We identified an in vivo granule assembly of Tudor, Aubergine, motor and metabolic proteins, and RNA helicases, and provide evidence for direct interactions within this assembly using purified components. Our study indicates that germ granules contain efficient biochemical reactors involved in post-transcriptional gene regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA