Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Phys Chem Chem Phys ; 26(15): 12084-12096, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586994

RESUMO

Superlattices constructed with the wide-band-gap semiconductor ZnO and magnetic oxide FeO, both in the wurtzite structure, have been investigated using spin-polarized first-principles calculations. The structural, electronic and magnetic properties of the (ZnO)n/(w-FeO)n superlattices were studied in great detail. Two different interfaces in the (ZnO)n/(w-FeO)n superlattices were identified and they showed very different magnetic and electronic properties. Local symmetry-driven interfacial magnetization and electronic states can arise from different Fe/Zn distributions at different interfaces or spin ordering of Fe in the superlattice. The local symmetry-driven interfacial magnetization and electronic states, originating either from different Fe/Zn distribution across interfaces I and II, or by spin ordering of Fe in the superlattice, can be identified. It was also found that, in the case of the ferromagnetic phase, the electrons are more delocalized for the majority spin but strongly localized for the minority spin, which resulted in interesting spin-dependent transport properties. Our results will pave the way for designing novel spin-dependent electronic devices through the construction of superlattices from semiconductors and multiferroics.

2.
Phys Chem Chem Phys ; 26(7): 5848-5857, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299693

RESUMO

Hydrogen is identified as one of the most promising sustainable and clean energy sources. The development of a hydrogen evolution reaction (HER) catalyst with high activity is essential to meet future needs. Considering the novel advantages of two-dimensional materials and the high catalytic activity of atomic transition metals, in this study, using density functional theory calculations, the HER on a single transition metal (10 different TM atoms) adsorbed and doped ZnO monolayer (ZnO-m) has been investigated. The Volmer-Tafel reaction mechanisms and strain engineering of the three best HER catalysts are also discussed. The results show that Pt@ZnO-m, Co-doped ZnO-m and Ir-doped ZnO-m with high stability all have a smaller absolute H adsorption free energy than Pt, and the optimal value of Pt@ZnO-m is -0.017 eV. The calculation of the reaction energy barriers shows that the Volmer-Tafel step is favorable. Co@ZnO-m and Ir@ZnO-m have high HER activity, the widest pH range, and acid-alkali resistance. Pt@ZnO-m and Co-doped ZnO-m maintain excellent HER performances in the strain range of -4% to 4%.

3.
J Am Chem Soc ; 146(5): 3010-3022, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278519

RESUMO

The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.

4.
Med Sci Monit ; 30: e943940, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288559

RESUMO

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study. Reference: Jin-Cheng Zheng, Ke-Jie Chang, Yu-Xiang Jin, Xue-Wei Zhao, Bing Li, Meng-Hang Yang. Arsenic Trioxide Inhibits the Metastasis of Small Cell Lung Cancer by Blocking Calcineurin-Nuclear Factor of Activated T Cells (NFAT) Signaling. Med Sci Monit 2019; 25:2228-2237. DOI: 10.12659/MSM.913091.

5.
RSC Adv ; 13(14): 9678-9685, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968026

RESUMO

Borophene has been recently reported to be a promising catalyst for water splitting. However, as a newly synthesized two-dimensional material, there are several issues that remain to be explored. In the present study, we investigate the catalytic performance of three kinds of pristine and decorated borophenes using first-principles calculations. Our calculations show that Ni-doped α borophene can be a highly active catalyst for water splitting. Doping or decorating with different transition metals such as Co or Ni at different sites shows a strong effect on the catalytic performance of α, ß12 and χ3 borophenes. Ni-doped α borophene shows low Gibbs free energy of hydrogen adsorption (ΔG H ∼ 0.055 eV) for the hydrogen evolution reaction (HER) and promising overpotential (0.455 V) for the oxygen evolution reaction (OER). This study provides some critical insights into the catalytic activity of borophene for water splitting by selecting suitable decorated metal.

6.
Phys Chem Chem Phys ; 25(8): 6142-6152, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752130

RESUMO

The olivine phosphate family has been widely utilized as cathode materials for high-performance lithium-ion batteries. However, limited energy density and poor rate performance caused by low electronic and ionic conductivities are the main obstacles that need to be overcome for their widespread application. In this work, atomic simulations have been performed to study the effects of lattice strains on the Li+ ion migration energy barrier in olivine phosphates LiMPO4 (M = Mn, Fe, Co) and (LiFePO4)n(LiMnPO4)m superlattices (SLs). The (LiFePO4)n(LiMnPO4)m superlattices include three ratios of LFP/LMP, namely SL3 + 1, SL1 + 1 and SL1 + 3, each of which is along three typical (100), (010) and (001) orientations. We mainly discuss two migration paths of Li+ ions: the low-energy path A channel parallel to the b-axis and the medium-energy path B channel parallel to the c-axis. It is found that the biaxial tensile strain perpendicular to the migration path is most beneficial to reduce the migration energy barrier of Li+ ions, and the strain on the b-axis has a dominant effect on the energy barrier of Li+ ion migration. For path A, SL3 + 1 alternating periodically along the (010) orientation can obtain the lowest Li ion migration energy barrier. For path B, SL1 + 3 is the most favorable for Li+ ion migration, and there is no significant difference among the three orientations. Our work provides reference values for cathode materials and battery design.

7.
Small Methods ; 7(1): e2201166, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543365

RESUMO

Graphene-like 2D coordination polymers (GCPs) have been of central research interest in recent decades with significant impact in many fields. According to classical coordination chemistry, Cu(II) can adopt the dsp2 hybridization to form square planar coordination geometry, but not Cu(I); this is why so far, there has been few 2D layered structures synthesized from Cu(I) precursors. Herein a pair of isostructural GCPs synthesized by the coordination of benzenehexathiol (BHT) ligands with Cu(I) and Cu(II) ions, respectively, is reported. Spectroscopic characterizations indicate that Cu(I) and Cu(II) coexist with a near 1:1 ratio in both GCPs but remain indistinguishable with a fractional oxidation state of +1.5 on average, making these two GCPs a unique pair of Creutz-Taube mixed-valence 2D structures. Based on density functional theory calculations, an intramolecular pseudo-redox mechanism is further uncovered whereby the radicals on BHT ligands can oxidize Cu(I) or reduce Cu(II) ions upon coordination, thus producing isostructures with distinct electron configurations. For the first time, it is demonstrated that using Cu(I) or Cu(II), one can achieve 2D isostructures, indicating an unusual fact that a neutral periodic structure can host a different number of total electrons as ground states, which may open a new chapter for 2D materials.

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145028

RESUMO

The anisotropy engineering of nanoporous zinc oxide (ZnO) frameworks has been performed by lattice dynamics simulation. A series of zinc oxide (ZnO) nanoporous framework structures was designed by creating nanopores with different sizes and shapes. We examined the size effects of varying several features of the nanoporous framework (namely, the removal of layers of atoms, surface-area-to-volume ratio, coordination number, porosity, and density) on its mechanical properties (including bulk modulus, Young's modulus, elastic constant, and Poisson ratio) with both lattice dynamics simulations. We also found that the anisotropy of nanoporous framework can be drastically tuned by changing the shape of nanopores. The maximum anisotropy (defined by Ymax/Ymin) of the Young's modulus value increases from 1.2 for bulk ZnO to 2.5 for hexagon-prism-shaped ZnO nanoporous framework structures, with a density of 2.72 g/cm3, and, even more remarkably, to 89.8 for a diamond-prism-shape at a density of 1.72 g/cm3. Our findings suggest a new route for desirable anisotropy and mechanical property engineering with nanoporous frameworks by editing the shapes of the nanopores for the desired anisotropy.

9.
Nat Mater ; 21(6): 681-688, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35606427

RESUMO

Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.

10.
ACS Omega ; 6(40): 26689-26698, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661022

RESUMO

B-γ-CsSnI3 perovskite solar cells (PSCs) are simulated employing diverse electron-transporting layers (ETLs, including TiO2, ZnO, SnO2, GaN, C60, and PCBM), and a comparative study has been made. Both regular and inverted planar structures are simulated. Effects of the thickness of absorbers and ETLs, doping of ETLs, and interface trap states on the photovoltaic performance are studied to optimize the device structures. The regular structures have larger short-circuit current density (J sc) than the inverted structures, but the inverted structures have larger fill factor (FF). All of the simulated optimal PSCs have similar open-circuit voltages (V oc) of ∼0.96 V. The PSCs with TiO2 ETLs have the best photovoltaic performance, and the optimum structure exhibits the highest efficiency of 20.2% with a V oc of 0.97 V, J sc of 29.67 mA/cm2, and FF of 0.70. The optimal PSCs with ZnO, GaN, C60, and PCBM ETLs exhibit efficiencies of 17.88, 18.09, 16.71, and 16.59%, respectively. The optimal PSC with SnO2 ETL exhibits the lowest efficiency of 15.5% in all of the simulated PSCs due to its cliff-like band offset at the SnO2/CsSnI3 interface. Furthermore, the increase of interface trap density and capture cross section is found to reduce the photovoltaic performance of PSCs. This work contributes to designing and fabricating CsSnI3 PSCs.

11.
Light Sci Appl ; 10(1): 153, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315859

RESUMO

The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemission spectroscopy is a powerful technique to probe electronic structures of valence band. However, this is a surface-sensitive technique that is usually considered not suitable for the probing of buried interface states, due to the limitation of electron-mean-free path. This article reviews several approaches that have been used to extend the surface-sensitive techniques to investigate the buried interface states, which include hard X-ray photoemission spectroscopy, resonant soft X-ray angle-resolved photoemission spectroscopy and thickness-dependent photoemission spectroscopy. Especially, a quantitative modeling method is introduced to extract the buried interface states based on the film thickness-dependent photoemission spectra obtained from an integrated experimental system equipped with in-situ growth and photoemission techniques. This quantitative modeling method shall be helpful to further understand the interfacial electronic states between functional materials and determine the interface layers.

12.
J Phys Chem Lett ; 12(29): 6934-6940, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34282908

RESUMO

The connection between electronic structures of metal-organic frameworks (MOFs) and their building subunits is a key cornerstone for rational MOF material design. Some two-dimensional conjugated MOFs were reported to be topological insulators. However, many of them are not intrinsic as the Fermi levels are far from the topological gaps. The subunit-to-MOF electronic orbital correspondence should be established to bridge their chemical structure and physical properties, thus understanding the design rules toward intrinsic topological insulators. Herein we reveal the fundamental role of the subunit-to-MOF symmetry relation in determining their orbital interaction and hybridization and, consequently, topological characteristics. In particular, such honeycomb-kagome MOFs possess delocalized symmetry-enforced nonbonding electronic states with the topological spin-orbit gap. The nonbonding nature of these states allows tailored band structure modulation through molecular structure and strain engineering, with the potential realization of an intrinsic metal-organic topological insulator.

13.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322841

RESUMO

The magnetic and electronic properties of boron-doped SrTiO3 have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO3 strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO3 can have nonmagnetic, ferromagnetic or antiferromagnetic alignment. The structure with the smallest dopant-dopant separation exhibited the lowest total energy among all configurations considered and was characterized by dimer pairs due to strong attraction. Ferromagnetic coupling was observed to be stronger when the two adjacent B atoms aligned linearly along the B-Ti-B axis, which could be associated with their local bonding structures. Therefore, the symmetry of the local structure made an important contribution to the generation of a magnetic moment. Our study also demonstrated that the O-Ti-O unit was easier than the Ti-B-Ti unit to deform. The electronic properties of boron-doped SrTiO3 tended to show semiconducting or insulating features when the dopant-dopant distance was less than 5 Å, which changed to metallic properties when the dopant-dopant distance was beyond 5 Å. Our calculated results indicated that it is possible to manipulate the magnetism and band gap via different dopant-dopant separations.

14.
Pest Manag Sci ; 76(6): 2233-2242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31976620

RESUMO

BACKGROUND: Insects cannot synthesize sterols and must acquire them from food. The mechanisms underlying how insects uptake dietary sterols are largely unknown except that NPC1b, an integral membrane protein, has been shown to be responsible for dietary cholesterol uptake in Drosophila melanogaster. However, whether NPC1b orthologs in other insect species, particularly the economically important pests, function similarly remains to be determined. RESULTS: In this study, we characterized the function of NPC1b in Helicoverpa armigera, a global pest that causes severe yield losses to many important crops. Limiting dietary cholesterol uptake to insects significantly inhibited food ingestion and weight gain. Compared to the wild-type H. armigera, the CRISPR/Cas9-edited NPC1b mutant larvae were incapable of getting adequate cholesterol and died in their early life stage. Gene expression profile and in situ hybridization analyses indicated that NPC1b was mainly expressed in the midgut where dietary cholesterol was absorbed. Expression of NPC1b was also correlated with the feeding life stages and was especially upregulated during early larval instars. Protein-ligand docking and sequence similarity analyses further demonstrated that NPC1b proteins of lepidopteran insects shared a relatively conserved cholesterol binding region, NPC1b_NTD, which, however, was highly divergent from bees-derived sequences. CONCLUSION: NPC1b was crucial for dietary cholesterol uptake and growth of H. armigera, and therefore could serve as an insecticide target for the development of a novel pest-management approach to control this economically significant insect pest with little off-target effect on bees and sterol-autotrophic animals. © 2020 Society of Chemical Industry.


Assuntos
Mariposas , Animais , Proteínas de Insetos , Insetos , Larva , Proteínas de Membrana , Proteína C1 de Niemann-Pick
15.
ACS Appl Mater Interfaces ; 11(41): 37885-37891, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31589393

RESUMO

Elemental doping represents a prominent strategy to improve interfacial chemistry in battery materials. Manipulating the dopant spatial distribution and understanding the dynamic evolution of the dopants at the atomic scale can inform better design of the doping chemistry for batteries. In this work, we create a targeted hierarchical distribution of Ti4+, a popular doping element for oxide cathode materials, in LiNi0.8Mn0.1Co0.1O2 primary particles. We apply multiscale synchrotron/electron spectroscopy and imaging techniques as well as theoretical calculations to investigate the dynamic evolution of the doping chemical environment. The Ti4+ dopant is fully incorporated into the TMO6 octahedral coordination and is targeted to be enriched at the surface. Ti4+ in the TMO6 octahedral coordination increases the TM-O bond length and reduces the covalency between (Ni, Mn, Co) and O. The excellent reversibility of Ti4+ chemical environment gives rise to superior oxygen reversibility at the cathode-electrolyte interphase and in the bulk particles, leading to improved stability in capacity, energy, and voltage. Our work directly probes the chemical environment of doping elements and helps rationalize the doping strategy for high-voltage layered cathodes.

16.
J Synchrotron Radiat ; 26(Pt 5): 1687-1693, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490160

RESUMO

The correlation between electronic properties and epitaxial strain in a cation-deficient system has rarely been investigated. Cation-deficient SrVO3 films are taken as a model system to investigate the strain-dependent electrical and electronic properties. Using element- and charge-sensitive soft X-ray absorption, V L-edge absorption measurements have been performed for Sr1-yVO3 films of different thicknesses capped with 4 u.c. (unit cell) SrTiO3 layers, showing the coexistence of V4+ and V5+ in thick films. A different correlation between V valence state and epitaxial strain is observed for Sr1-yVO3 ultrathin films, i.e. a variation in V valence state is only observed for tensile-strained films. Sr1-yVO3 thin films are metallic and exhibit a thickness-driven metal-insulator transition at different critical thicknesses for tensile and compressive strains. The asymmetric response of electrical conductivity to strain observed in cation-deficient Sr1-yVO3 films will be beneficial for functional oxide electronic devices.

17.
Proc Natl Acad Sci U S A ; 116(24): 11618-11623, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127040

RESUMO

The catalytic activity of low-dimensional electrocatalysts is highly dependent on their local atomic structures, particularly those less-coordinated sites found at edges and corners; therefore, a direct probe of the electrocatalytic current at specified local sites with true nanoscopic resolution has become critically important. Despite the growing availability of operando imaging tools, to date it has not been possible to measure the electrocatalytic activities from individual material edges and directly correlate those with the local structural defects. Herein, we show the possibility of using feedback and generation/collection modes of operation of the scanning electrochemical microscope (SECM) to independently image the topography and local electrocatalytic activity with 15-nm spatial resolution. We employed this operando microscopy technique to map out the oxygen evolution activity of a semi-2D nickel oxide nanosheet. The improved resolution and sensitivity enables us to distinguish the higher activities of the materials' edges from that of the fully coordinated surfaces in operando The combination of spatially resolved electrochemical information with state-of-the-art electron tomography, that unravels the 3D complexity of the edges, and ab initio calculations allows us to reveal the intricate coordination dependent activity along individual edges of the semi-2D material that is not achievable by other methods. The comparison of the simulated line scans to the experimental data suggests that the catalytic current density at the nanosheet edge is ∼200 times higher than that at the NiO basal plane.

18.
Nat Commun ; 10(1): 1650, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967531

RESUMO

Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.

19.
Phys Rev Lett ; 122(12): 126401, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978042

RESUMO

Understanding singularities in ordered structures, such as dislocations in lattice modulation and solitons in charge ordering, offers great opportunities to disentangle the interactions between the electronic degrees of freedom and the lattice. Specifically, a modulated structure has traditionally been expressed in the form of a discrete Fourier series with a constant phase and amplitude for each component. Here, we report atomic scale observation and analysis of a new modulation wave in hole-doped LuFe_{2}O_{4+δ} that requires significant modifications to the conventional modeling of ordered structures. This new modulation with an unusual quasiperiodic singularity can be accurately described only by introducing a well-defined secondary modulation vector in both the phase and amplitude parameter spaces. Correlated with density-functional-theory (DFT) calculations, our results reveal that those singularities originate from the discontinuity of lattice displacement induced by interstitial oxygen in the system. The approach of our work is applicable to a wide range of ordered systems, advancing our understanding of the nature of singularity and modulation.

20.
Med Sci Monit ; 25: 2228-2237, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30913205

RESUMO

BACKGROUND The inhibitory effect of arsenic trioxide (As2O3) on lung cancer has been reported in some preclinical studies. However, its effect on small cell lung cancer (SCLC) has been poorly explored. Calcineurin and its substrate, nuclear factor of activated T cells (NFAT), mediate the downstream signaling of VEGF, and is critical in the process endothelium activation and tumor metastasis. In this study, we aimed to evaluate whether As2O3 had inhibitory effects on endothelial cells activation and the metastasis of SCLC, and to explore the possible mechanisms. MATERIAL AND METHODS In vitro, human umbilical vein endothelial cells (HUVECs) were used. Cell Counting Kit-8 assay and cell migration assay were performed to determine the effect of As2O3 on HUVECs proliferation and migration. The level of calcineurin, NFAT, downstream factors for Down syndrome candidate region 1 (DSCR1), and the endogenous inhibitor of calcineurin, were evaluated by quantitative PCR and western blotting. In vivo, SCLC metastasis models were established by injecting NCI-H446 cells into tail veins of nude mice. Tumor-bearing mice were treated with As2O3 or calcineurin inhibitor for 10 days, after which tumor metastasis in target organs was evaluated. RESULTS As2O3 significantly inhibited the proliferation and migration of endothelial cells. Also, As2O3 inhibited the expression levels of calcineurin, NFAT, and the downstream target genes CXCR7 and RND1, while it upregulated the level of DSCR1. Both As2O3 and calcineurin inhibitor exhibited notable inhibitory effect on the metastasis of SCLC, without obvious side effects. CONCLUSIONS These findings suggested that As2O3 had remarkable inhibitory effects on the endothelial cell activation and SCLC metastasis, and the mechanism might be related to the blocking of calcineurin-NFAT signaling by upregulating DSCR1.


Assuntos
Trióxido de Arsênio/farmacologia , Fatores de Transcrição NFATC/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Trióxido de Arsênio/metabolismo , Calcineurina/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , China , Proteínas de Ligação a DNA , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Proteínas Musculares/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Metástase Neoplásica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Receptores CXCR/efeitos dos fármacos , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA