RESUMO
Cerebrovascular accidents, commonly known as strokes, represent a prevalent neurological event leading to significant upper limb disabilities, thereby profoundly affecting individuals' activities of daily living and diminishing their quality of life. Traditional rehabilitation methods for upper limb recovery post-stroke are often hindered by limitations, including therapist and patient fatigue, reliance on singular training methodologies, and lack of sustained motivation. Addressing these challenges, this study introduces an upper limb rehabilitation robot, which uses intelligent feedback motion control to improve therapeutic outcomes. The system is distinguished by its capability to adjust the direction and magnitude of force feedback dynamically, based on the detection of spastic movements during exercises, thereby offering a tailored therapeutic experience. This system is equipped with four distinct training modes, intelligent assessment of joint range of motion, and the ability to personalize training programs. Moreover, it provides an immersive interactive gaming experience coupled with comprehensive safety measures. This multifaceted approach not only elevates the engagement and interest of participants beyond traditional rehabilitation protocols but also demonstrates significant improvements in upper limb functionality and the activities of daily living among hemiplegic patients. The system exemplifies an advanced tool in upper limb rehabilitation, offering a synergistic blend of precision, personalization, and interactive engagement, thereby broadening the therapeutic options available to stroke survivors.
Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Robótica/métodos , Robótica/instrumentação , Extremidade Superior/fisiopatologia , Destreza Motora/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Masculino , FemininoRESUMO
BACKGROUND: Regulatory T cells (Tregs) are reduced in the peripheral blood and skin lesions of patients with bullous pemphigoid (BP). Low-dose interleukin 2 (IL-2) therapy can stimulate Tregs specifically, suggesting potential for the treatment of BP. OBJECTIVE: To evaluate the response to low-dose IL-2 therapy in the treatment of moderate-to-severe BP. METHODS: Forty-three patients with moderate-to-severe BP were included. The therapy included systemic corticosteroids with an initial dose of 0.5 mg/kg/d for moderate and 1.0 mg/kg/d for severe disease, respectively, combined with allowed immunosuppressants for the control group, whereas in addition to the same corticosteroid therapy, IL-2 (half million IU) was administered subcutaneously every other day for the treatment group for 8 weeks. The primary outcome was the number of days required to achieve disease control. Secondary outcomes included other clinical responses. RESULTS: The number of days required to achieve disease control with the treatment group was (7.60 ± 3.00), which was shorter than in the control group (10.43 ± 3.06) (P = .008). The total amount of systemic corticosteroids was less, and no serious infections were detected in the treatment group. LIMITATIONS: Single center, open-label study with short duration and small size. CONCLUSION: Our trial supports the potential of low-dose IL-2 therapy for patients with moderate-to-severe BP, which showed earlier treatment responses.
RESUMO
Chromoblastomycosis (CBM), a chronic fungal infection affecting the skin and subcutaneous tissues, is predominantly caused by dematiaceous fungi in tropical and subtropical areas. Characteristically, CBM presents as plaques and nodules, often leading to scarring post-healing. Besides traditional diagnostic methods such as fungal microscopy, culture, and histopathology, dermatoscopy and reflectance confocal microscopy can aid in diagnosis. The treatment of CBM is an extended and protracted process. Imiquimod, acting as an immune response modifier, boosts the host's immune response against CBM, and controls scar hyperplasia, thereby reducing the treatment duration. We present a case of CBM in Guangdong with characteristic reflectance confocal microscopy manifestations, effectively managed through a combination of itraconazole, terbinafine, and imiquimod, shedding light on novel strategies for managing this challenging condition.
Assuntos
Antifúngicos , Cromoblastomicose , Imiquimode , Itraconazol , Terbinafina , Cromoblastomicose/tratamento farmacológico , Cromoblastomicose/microbiologia , Imiquimode/uso terapêutico , Humanos , Antifúngicos/uso terapêutico , Itraconazol/uso terapêutico , Terbinafina/uso terapêutico , Masculino , Resultado do Tratamento , Microscopia Confocal , Pele/patologia , Pele/microbiologia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Chromoblastomycosis (CMB) is a chronic granulomatous fungal infection that affect the skin and subcutaneous tissues. It is clinically problematic due to limited treatment options, low cure rates, and high rates of relapse. This underscores the necessity for innovative treatment approaches. In this study, potassium iodide (KI) combined with Methylene Blue (MB) mediated antimicrobial photodynamic therapy (PDT) were assessed in the treatment of Fonsecaea monophora (F. monophora) both in vitro and in vivo. And the underlying mechanism that contributes to the efficacy of this treatment approach was investigated. METHODS: In vitro experiments were conducted using different combinations and concentrations of MB, KI, and 660 nm light (60 mW/cm2) to inhibit F. monophora. The study was carried out using colony-forming unit (CFU) counts and scanning electron microscopy (SEM). The production of singlet oxygen (1O2), free iodine (I2), hydrogen peroxide (H2O2), and superoxide anion during the KI combined MB-mediated antimicrobial PDT process was also detected. In vivo experiments were developed using a Balb/c mouse paw infection model with F. monophora and treated with PBS, 10 mM KI, 2 mM MB +100 J/cm² and 10 mM KI+2 mM MB +100 J/cm² respectively. Inflammatory swelling, fungal load and histopathological analyses of the mouse footpads were assessed. RESULTS: KI enhanced the killing effect of MB-mediated antimicrobial PDT on the conidial spores of F. monophora at the cell and infected animal model level. During the process, the main antimicrobial agents in KI combined with MB- mediated antimicrobial PDT could produce stronger toxic active species including free I2 and H2O2. CONCLUSION: KI combined with MB-mediated antimicrobial PDT could be an effective adjunct therapy for treating CBM.
Assuntos
Azul de Metileno , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Fármacos Fotossensibilizantes , Iodeto de Potássio , Iodeto de Potássio/farmacologia , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Fotoquimioterapia/métodos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Cromoblastomicose/tratamento farmacológico , Ascomicetos/efeitos dos fármacos , Oxigênio Singlete/metabolismo , Peróxido de Hidrogênio/farmacologiaRESUMO
OBJECTIVE: The aim of the paper was to investigate the composition and structure of intestinal flora in patients with cerebral ischemic stroke (CIS), and to investigate the relationship between gut microbiota (GM) and different levels of stroke severity. METHODS: In this study, 47 CIS patients (16 mild, 21 moderate, and 10 severe) and 15 healthy controls were included. General information, clinical data, and behavioral scores of the enrolled subjects were collected. Deoxyribonucleic acid in fecal intestinal flora was extracted and detected using high-throughput Illumina 16S ribosomal ribonucleic acid sequencing technology. Finally, the correlation between the community composition of intestinal microbiota and National Institutes of Health Stroke Scale (NIHSS) score in CIS patients was analyzed. RESULTS: Compared with healthy controls, there was no statistically significant difference in Alpha diversity among CIS patients, but the principal coordinate analysis showed significant differences in the composition of the GM among stroke patients with different degrees of severity and controls. In CIS patients, Streptococcus was significantly enriched, and Eshibacter-Shigella, Bacteroides, and Agathobacter were significantly down-regulated (P < .05). In addition, the relative abundance of Blautia was negatively correlated with the NIHSS score. CONCLUSIONS: Our results show that different degrees of CIS severity exert distinct effects on the intestinal microbiome. This study reveals the intestinal microecological changes after brain injury from the perspective of brain-gut axis. Intestinal microorganisms not only reveal the possible pathological process and indicate the severity of neurologic impairment, but also make targeted therapy possible for CIS patients.
Assuntos
Microbioma Gastrointestinal , AVC Isquêmico , Humanos , Microbioma Gastrointestinal/fisiologia , Masculino , AVC Isquêmico/microbiologia , AVC Isquêmico/complicações , Feminino , Pessoa de Meia-Idade , Idoso , Índice de Gravidade de Doença , Fezes/microbiologia , RNA Ribossômico 16SRESUMO
OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.
Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Eletroacupuntura , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Glicemia , Transdução de Sinais , Hipocampo/metabolismo , Apoptose , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapiaRESUMO
Background: Dysphagia is a common and clinically significant complication of ischemic stroke. The prevalence and risk factors for dysphagia may vary at different stages following an ischemic stroke. Methods: This study included patients with acute and chronic ischemic stroke who were treated at the Department of Rehabilitation, First Affiliated Hospital, Zhejiang University School of Medicine from 2019 to 2022. Various demographic, clinical, and laboratory parameters were collected, and statistical analyses were performed to investigate their association with dysphagia. Results: Among the 399 ischemic stroke patients included in the study, 165 (41.4 %) experienced dysphagia, with 72 (38.7 %) in the acute phase and 93 (43.7 %) in the chronic phase. Univariate analysis revealed significant associations (p < 0.05) between dysphagia and factors such as pulmonary infection, aphasia, NIHSS score, ADL score, NLR score, lower extremity Brunnstrom's stages, and sit-to-stand balance. Multiple logistic regression analysis, after adjusting for confounding factors, identified the ADL score as an independent predictor of dysphagia. These findings were consistent across three time-windows: the acute phase, the chronic phase, and 180 days after stroke onset. Additionally, the lymphocyte count and pulmonary infection were identified as potential independent indicators. Conclusions: This study investigated the prevalence and risk factors for dysphagia in ischemic stroke patients at different time-windows. A low ADL score (<40) may serve as a valuable and reliable predictor for poststroke dysphagia in clinical settings.
RESUMO
Chromoblastomycosis (CBM), a chronic, granulomatous, suppurative mycosis of the skin and subcutaneous tissue, is caused by several dematiaceous fungi. The formation of granulomas, tissue proliferation, and fibrosis in response to these pathogenic fungi is believed to be intricately linked to host immunity. To understand this complex interaction, we conducted a comprehensive analysis of immune cell infiltrates, neutrophil extracellular traps (NETs) formation, and the fibrosis mechanism in 20 CBM lesion biopsies using immunohistochemical and immunofluorescence staining methods. The results revealed a significant infiltration of mixed inflammatory cells in CBM granulomas, prominently featuring a substantial presence of Th2 cells and M2 macrophages. These cells appeared to contribute to the production of collagen I and III in the late fibrosis mechanism, as well as NETs formation. The abundance of Th2 cytokines may act as a factor promoting the bias of macrophage differentiation toward M2, which hinders efficient fungal clearance while accelerates the proliferation of fibrous tissue. Furthermore, the expression of IL-17 was noted to recruit neutrophils, facilitating subsequent NETs formation within CBM granulomas to impede the spread of sclerotic cells. Understanding of these immune mechanisms holds promise for identifying therapeutic targets for managing chronic granulomatous CBM.
Assuntos
Armadilhas Extracelulares , Animais , Neutrófilos , Fibrose , Granuloma/veterinária , ImunidadeRESUMO
Chlorinated organic pollutants (COPs) are common in flooded environments. To examine the residual status and effects of COPs on flooded environments, a survey of 7 coastal wetlands in Zhejiang, East China was conducted. Total COP concentrations detected from 95.69 to 412.76 ng g-1 dw. Gamma-HCH and o,p'-DDT posed the greatest risk with exceedance rates of 100% according to sediment quality guidelines. Samples with higher COP pollution had higher microbial diversity, more complex microbial networks, more deterministic community assembly processes and lower microbiome stability, indicating an improved soil function for balance cycle of substances, especially for COP degradation. Further analysis using quantitative real-time PCR suggested COP-dechlorination interacted with natural redox processes, especially sulfate reduction and methanogenesis. The positive correlation between CH4 and pentachlorobenzene indicated a potential increase in greenhouse gas emissions caused by COP pollution. Correlation between dsr gene and COPs demonstrated the ability of sulfate-reducing bacteria to degrade COPs. Particularly, facultative OHRB such as sulfate-reducing bacteria hold significant importance in the process of COP-dechlorination. This finding provides a reference for COP pollution remediation. Collectively, our study offers new insight into the residual effect of COPs in coastal wetlands and contributes to an improved understanding of bioremediation strategies for COP pollution.
Assuntos
Poluentes Ambientais , Microbiota , Áreas Alagadas , Solo , Oxirredução , SulfatosRESUMO
Recently, learning-based multi-exposure fusion (MEF) methods have made significant improvements. However, these methods mainly focus on static scenes and are prone to generate ghosting artifacts when tackling a more common scenario, i.e., the input images include motion, due to the lack of a benchmark dataset and solution for dynamic scenes. In this paper, we fill this gap by creating an MEF dataset of dynamic scenes, which contains multi-exposure image sequences and their corresponding high-quality reference images. To construct such a dataset, we propose a 'static-for-dynamic' strategy to obtain multi-exposure sequences with motions and their corresponding reference images. To the best of our knowledge, this is the first MEF dataset of dynamic scenes. Correspondingly, we propose a deep dynamic MEF (DDMEF) framework to reconstruct a ghost-free high-quality image from only two differently exposed images of a dynamic scene. DDMEF is achieved through two steps: pre-enhancement-based alignment and privilege-information-guided fusion. The former pre-enhances the input images before alignment, which helps to address the misalignments caused by the significant exposure difference. The latter introduces a privilege distillation scheme with an information attention transfer loss, which effectively improves the deghosting ability of the fusion network. Extensive qualitative and quantitative experimental results show that the proposed method outperforms state-of-the-art dynamic MEF methods. The source code and dataset are released at https://github.com/Tx000/Deep_dynamicMEF.
RESUMO
It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0-54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9-69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon's index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil.
Assuntos
Poluentes do Solo , Solo , Solo/química , Hexaclorobenzeno , Ditionita/metabolismo , Poluentes do Solo/análise , Bactérias/metabolismoRESUMO
Diabetes is a complex metabolic disease. In recent years, diabetes and its chronic complications have become a health hotspot of global concern. It is very important to find promising therapeutic targets and directions. Ferroptosis is a new type of programmed cell death that is different from cell necrosis, apoptosis, and autophagy. Ferroptosis is mainly characterized by iron-dependent lipid peroxidation. With the reduction of the anti-oxidative capacity of cells, the accumulated reactive lipid oxygen species will cause oxidative cell death and lead to ferroptosis at lethal levels. Recent studies have shown that ferroptosis plays an important regulatory role in the initiation and development of diabetes, as well as various complications of diabetes. In this review, we will summarize new findings related to ferroptosis and diabetic complications and propose ferroptosis as a potential target for treating diabetic complications.
RESUMO
Stroke rehabilitation often requires frequent and intensive therapy to improve functional recovery. Virtual reality (VR) technology has shown the potential to meet these demands by providing engaging and motivating therapy options. The digital occupational training system is a VR application that utilizes cutting-edge technologies, including multi-touch screens, virtual reality, and human-computer interaction, to offer diverse training techniques for advanced cognitive capacity and hand-eye coordination abilities. The objective of this study was to assess the effectiveness of this program in enhancing cognitive function and upper extremity rehabilitation in stroke patients. The training and assessment consist of five cognitive modules covering perception, attention, memory, logical reasoning, and calculation, along with hand-eye coordination training. This research indicates that after eight weeks of training, the digital occupational training system can significantly improve cognitive function, daily living skills, attention, and self-care abilities in stroke patients. This software can be employed as a time-saving and clinically effective rehabilitation aid to complement traditional one-on-one occupational therapy sessions. In summary, the digital occupational training system shows promise and offers potential financial benefits as a tool to support the functional recovery of stroke patients.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Resultado do Tratamento , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica , Cognição , Extremidade SuperiorRESUMO
Achieving high-quality surface profiles under strong ambient light is challenging in fringe projection profilometry (FPP) since ambient light inhibits functional illumination from exhibiting sinusoidal stripes with high quantization levels. Conventionally, large-step phase shifting approaches are presented to enhance the anti-interference capability of FPP, but the image acquisition process in these approaches is highly time-consuming. Inspired by the promising performance of deep learning in optical metrology, we propose a deep learning-enabled anti-ambient light (DLAL) approach that can help FPP extract phase distributions from a single fringe image exposed to unbalanced lighting. In this work, the interference imposed by ambient light on FPP is creatively modeled as ambient light-induced phase error (ALPE). Guided by the ALPE model, we generate the dataset by precisely adjusting the stripe contrast before performing active projection, overcoming the challenge of collecting a large sample of fringe images with various illumination conditions. Driven by the novel dataset, the generated deep learning model can effectively suppress outliers among surface profiles in the presence of strong ambient light, thereby implementing high-quality 3D surface imaging. Experimentally, we verify the effectiveness and adaptability of the proposed DLAL approach in both indoor and outdoor scenarios with strong irradiation.
RESUMO
In recent years, an increasing number of online social value co-creation activities are conducted by companies in their marketing campaigns. A question is that whether these activities that take social responsibilities could help enterprises improve marketing performance. Drawing from social interaction theory, this study explores the causal effect of online social value co-creation on consumer purchase intention through three experiments. The results show that social value co-creation can stimulate consumer purchase intention. Moreover, consumer-company identification plays a mediating role in linking social value co-creation to purchase intention. In addition, compared to low social norms, high social norms are more likely to weaken the influence of social value co-creation on consumers' buying intention. The study provides both theoretical and practical implications to research area. Limitation and future research directions are also discussed.
RESUMO
Houttuyniae Herba (HH) refers to the dried aerial part of Houttuynia cordata Thunb. (DHC) or the fresh whole grass of Houttuynia cordata Thunb. (FHC), where DHC are harvested in summer and FHC around the year. However, harvest seasons and processing methods (i.e., medicinal parts and drying process) might affect the quality of HH. To compare the essential oils (EOs) of DHC and FHC and their two harvest seasons, GC-MS analysis combined with chemometric analysis was applied. The results showed that the oil yield of FHC (0.076 ± 0.030%) was higher than that of DHC (0.038 ± 0.029%), and oil yield was higher in summer than in autumn (0.044 ± 0.029% for DHC1, 0.036 ± 0.028% for DHC2, 0.084 ± 0.026% for FHC1, and 0.067 ± 0.033% for FHC2, respectively). Moreover, hierarchical cluster analysis (HCA) and principal component analysis (PCA) successfully distinguished the chemical constituents of DHC and FHC oils. Additionally, according to orthogonal partial least squares discriminant analysis (OPLS-DA), eleven components were selected as chemical markers for discriminating DHC and FHC, and two and four chemical markers for discriminating two harvest seasons of DHC and FHC, respectively. Among these markers, the average contents of α-pinene, limonene, ß-phellandrene, α-terpineol, 4-tridecanone, and ethyl decanoate were higher in FHC oils. In contrast, the average contents of nonanal, 1-nonanol, ß-cyclocitral, n-hexadecanoic acid, and octadecanol were higher in DHC oils. Additionally, the contents of 4-tridecanone and ethyl decanoate were both higher in DHC1 oils than in DHC2 oils. Moreover, the contents of ß-myrcene and ß-phellandrene were higher in FHC1 oils, while the contents of 2,6-octadien-1-ol, 3,7-dimethyl-, acetate, and (z)-phytol were higher in FHC2 oils. For these reasons, this study provides a scientific basis for quality control and clinical medication.
RESUMO
In order to clarify the effect of biochar-polylactic acid (PLA) composite on reductive dechlorination of HCB in paddy soils, an anaerobic incubation experiment was conducted with four treatments of Sterile control, Control, Biochar, and Biochar-PLA in Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). The results showed that in Ac, biochar addition significantly promoted HCB degradation during the whole incubation period, but biochar-PLA composite inhibited HCB dechlorination due to the low soil pH in the early period and then accelerated HCB degradation while soil pH climbed to nearly neutral. The dechlorination rate of HCB in An was: Biochar-PLA > Biochar > Control > Sterilization control. The degradation rate of HCB in An was faster than in Ac, due to the higher iron content and neutral pH condition in An. The results indicated that biochar-PLA composite promoted the reductive dechlorination of HCB efficiently in paddy soil under nearly neutral pH condition.
Assuntos
Hexaclorobenzeno , Poluentes do Solo , Carvão Vegetal , Concentração de Íons de Hidrogênio , Poliésteres , Solo , Poluentes do Solo/análiseRESUMO
An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering.
Assuntos
Osso e Ossos/diagnóstico por imagem , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Humanos , Tomografia Computadorizada por Raios XRESUMO
Abstract Exogenous antioxidants may influence endogenous antioxidant enzyme activity. We observed in healthy women (n = 95) that higher plasma α-carotene, ß-carotene, ß-cryptoxanthin, sum of plasma carotenoids, and fruit and vegetable intake were associated with lower plasma extracellular-superoxide dismutase activity. In women with a history of cardiovascular disease, diabetes, or cancer (n = 62), we observed no associations. Our observation that plasma extracellular-superoxide dismutase activity was inversely associated with plasma carotenoids and fruit and vegetable intake in healthy women, but not in women with a history of cardiovascular disease, diabetes, or cancer, suggests that the associations between exogenous and endogenous antioxidants may differ in health and disease.