Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Environ Sci (China) ; 148: 107-115, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095149

RESUMO

The evaluation of toxicity related to polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) is crucial for a comprehensive risk assessment in real-world exposure scenarios. This study employed a controlled feeding experiment to investigate the metabolic effects of dioxin-like compounds (DLCs) on laying hens via feed exposure. Diets enriched with two concentrations (1.17 and 5.13 pg toxic equivalents (TEQ)/g dry weight (dw)) were administered over 14 days, followed by 28 days of clean feed. Metabolomics analyses of blood samples revealed significant metabolic variations between PCDD/Fs and DL-PCBs exposed groups and controls, reflecting the induced metabolic disruption. Distinct changes were observed in sphingosine, palmitoleic acid, linoleate, linolenic acid, taurocholic acid, indole acrylic acid, and dibutyl phthalate levels, implying possible connections between PCDD/Fs and DL-PCBs toxic effects and energy-neuronal imbalances, along with lipid accumulation and anomalous amino acid metabolism, impacting taurine metabolism. Moreover, we identified three differential endogenous metabolites-L-tryptophan, indole-3-acetaldehyde, and indole acrylic acid-as potential ligands for the aryl hydrocarbon receptor (AhR), suggesting their role in mediating PCDD/Fs and DL-PCBs toxicity. This comprehensive investigation provides novel insights into the metabolic alterations induced by PCDD/Fs and DL-PCBs in laying hens, thereby enhancing our ability to assess risks associated with their exposure in human populations.


Assuntos
Galinhas , Animais , Dioxinas e Compostos Semelhantes a Dioxinas/metabolismo , Dioxinas e Compostos Semelhantes a Dioxinas/toxicidade , Feminino , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Bifenilos Policlorados/toxicidade , Metabolômica , Metaboloma/efeitos dos fármacos , Ração Animal/análise , Dibenzodioxinas Policloradas/toxicidade
2.
Nat Commun ; 15(1): 6837, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122706

RESUMO

Membrane reactors are known for their efficiency and superior operability compared to traditional batch processes, but their limited diversity poses challenges in meeting various reaction requirements. Herein, we leverage the molecular tunability of covalent organic frameworks (COFs) to broaden their applicability in membrane reactors. Our COF membrane demonstrates an exceptional ability to achieve complete conversion in just 0.63 s at room temperature-a benchmark in efficiency for Knoevenagel condensation. This performance significantly surpasses that of the corresponding homogeneous catalyst and COF powder by factors of 176 and 375 in turnover frequency, respectively. The enhanced concentration of reactants and the rapid removal of generated water within the membrane greatly accelerate the reaction, reducing the apparent activation energy. Consequently, this membrane reactor enables reactions that are unattainable using both COF powders and homogeneous catalysts. Considering the versatility, our findings highlight the substantial promise of COF-based membrane reactors in organic transformations.

3.
Commun Biol ; 7(1): 954, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112797

RESUMO

Parkinson's disease (PD) exhibits heterogeneity in terms of symptoms and prognosis, likely due to diverse neuroanatomical alterations. This study employs a contrastive deep learning approach to analyze Magnetic Resonance Imaging (MRI) data from 932 PD patients and 366 controls, aiming to disentangle PD-specific neuroanatomical alterations. The results reveal that these neuroanatomical alterations in PD are correlated with individual differences in dopamine transporter binding deficit, neurodegeneration biomarkers, and clinical severity and progression. The correlation with clinical severity is verified in an external cohort. Notably, certain proteins in the cerebrospinal fluid are strongly associated with PD-specific features, particularly those involved in the immune function. The most notable neuroanatomical alterations are observed in both subcortical and temporal regions. Our findings provide deeper insights into the patterns of brain atrophy in PD and potential underlying molecular mechanisms, paving the way for earlier patient stratification and the development of treatments to slow down neurodegeneration.


Assuntos
Progressão da Doença , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Doença de Parkinson , Índice de Gravidade de Doença , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquidiano , Aprendizado Profundo
4.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090717

RESUMO

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Assuntos
Células da Granulosa , Nanopartículas , Oócitos , Poliestirenos , Transdução de Sinais , Animais , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Nanopartículas/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
BMC Gastroenterol ; 24(1): 237, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075373

RESUMO

BACKGROUND: The research aims to explore the characteristics of intestinal flora, nutritional status and immune function in patients with different types of obese colon cancer. METHODS: A retrospective analysis is conducted on 64 cases of obese colon cancer diagnosed from June 2018 to January 2020. According to the histological staging of the cancer, they are classified into adenocarcinoma, adenosquamous carcinoma and undifferentiated carcinoma, with corresponding cases of 24, 22 and 18, respectively. The intestinal flora (Bifidobacterium, Lactobacillus, Enterococcus faecalis, Escherichia coli, and yeast), nutritional status (Hb, Alb, PA, TFN, and PNI), immune function (IgG, IgM, IgA, CD4+, CD8+, and CD4+/CD8+) are analyzed in the different groups of patients. Survival curves are evaluated by Kaplan-Meier method and log-rank test for tumour death, local recurrence, and distant metastasis. RESULTS: There were no statistically significant differences in intestinal flora (Bifidobacterium, Lactobacillus, Enterococcus faecalis, Escherichia coli, and yeast), nutritional status (Hb, Alb, PA, TFN, and PNI) and immune function (IgG, IgM, IgA, CD4+, CD8+, and CD4+/CD8+) between different groups. There was a significant correlation between intestinal flora, nutritional status and immune function for all three. The survival curves of tumour death, local recurrence and distant metastasis in different groups of obese colon cancer patients were statistically significant. The tumor mortality rate, local recurrence, and distant metastasis rate in adenocarcinoma were 78.65%, 54.25% and 48.26% respectively. CONCLUSION: There are differences in intestinal flora, nutritional status and immune function among different types of obese colon cancer patients, but adenocarcinoma has the least benefit in intestinal flora, poor nutritional status, and weakest immune function.


Assuntos
Neoplasias do Colo , Microbioma Gastrointestinal , Estado Nutricional , Obesidade , Humanos , Microbioma Gastrointestinal/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias do Colo/imunologia , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Obesidade/complicações , Obesidade/imunologia , Idoso , Adenocarcinoma/imunologia , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Adulto
6.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824143

RESUMO

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


Assuntos
Antígeno CTLA-4 , Doxorrubicina , Sistemas de Liberação de Medicamentos , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
7.
Comput Methods Programs Biomed ; 253: 108237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820715

RESUMO

BACKGROUND AND OBJECTIVES: Graph neural network (GNN) has been extensively used in histopathology whole slide image (WSI) analysis due to the efficiency and flexibility in modelling relationships among entities. However, most existing GNN-based WSI analysis methods only consider the pairwise correlation of patches from one single perspective (e.g. spatial affinity or embedding similarity) yet ignore the intrinsic non-pairwise relationships present in gigapixel WSI, which are likely to contribute to feature learning and downstream tasks. The objective of this study is therefore to explore the non-pairwise relationships in histopathology WSI and exploit them to guide the learning of slide-level representations for better classification performance. METHODS: In this paper, we propose a novel Masked HyperGraph Learning (MaskHGL) framework for weakly supervised histopathology WSI classification. Compared with most GNN-based WSI classification methods, MaskHGL exploits the non-pairwise correlations between patches with hypergraph and global message passing conducted by hypergraph convolution. Concretely, multi-perspective hypergraphs are first built for each WSI, then hypergraph attention is introduced into the jointed hypergraph to propagate the non-pairwise relationships and thus yield more discriminative node representation. More importantly, a masked hypergraph reconstruction module is devised to guide the hypergraph learning which can generate more powerful robustness and generalization than the method only using hypergraph modelling. Additionally, a self-attention-based node aggregator is also applied to explore the global correlation of patches in WSI and produce the slide-level representation for classification. RESULTS: The proposed method is evaluated on two public TCGA benchmark datasets and one in-house dataset. On the public TCGA-LUNG (1494 WSIs) and TCGA-EGFR (696 WSIs) test set, the area under receiver operating characteristic (ROC) curve (AUC) were 0.9752±0.0024 and 0.7421±0.0380, respectively. On the USTC-EGFR (754 WSIs) dataset, MaskHGL achieved significantly better performance with an AUC of 0.8745±0.0100, which surpassed the second-best state-of-the-art method SlideGraph+ 2.64%. CONCLUSIONS: MaskHGL shows a great improvement, brought by considering the intrinsic non-pairwise relationships within WSI, in multiple downstream WSI classification tasks. In particular, the designed masked hypergraph reconstruction module promisingly alleviates the data scarcity and greatly enhances the robustness and classification ability of our MaskHGL. Notably, it has shown great potential in cancer subtyping and fine-grained lung cancer gene mutation prediction from hematoxylin and eosin (H&E) stained WSIs.


Assuntos
Redes Neurais de Computação , Humanos , Algoritmos , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Interpretação de Imagem Assistida por Computador/métodos
8.
World J Gastrointest Oncol ; 16(5): 2253-2260, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764812

RESUMO

BACKGROUND: Undifferentiated pleomorphic sarcoma (UPS) is a rare malignant mesenchymal tumor with a poor prognosis. It mainly occurs in the extremities, trunk, head and neck, and retroperitoneum regions. Owing to the lack of specific clinical manifestations and imaging features, UPS diagnosis mainly depends on pathological and immunohistochemical examinations for exclusive diagnosis. Here we report an extremely rare case of high-grade UPS in the common bile duct (CBD). There are limited available data on such cases. CASE SUMMARY: A 70-year-old woman was admitted to our department with yellow eyes and urine accompanied by upper abdominal distending pain for 2 wk. Her laboratory data suggested significantly elevated hepatorenal function levels. The imaging data revealed calculous cholecystitis, intrahepatic and extrahepatic bile duct dilation with extrahepatic bile duct calculi, and a space-occupying lesion at the distal CBD. After endoscopic biliary stenting and symptomatic support therapy, CBD exploration and biopsy were performed. The frozen section indicated malignant spindle cell tumor of the CBD mass, and further radical pancreaticoduodenectomy was performed. Finally, the neoplasm was diagnosed as a high-grade UPS combined with the light-microscopic morphology and immunohistochemical results. CONCLUSION: This extremely rare case highlighted the need for increasing physicians' vigilance, reducing the odds of misdiagnosis, and providing appropriate treatment strategies.

9.
Plants (Basel) ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611501

RESUMO

In this study, an innovative approach based on multimodal data and the transformer model was proposed to address challenges in agricultural disease detection and question-answering systems. This method effectively integrates image, text, and sensor data, utilizing deep learning technologies to profoundly analyze and process complex agriculture-related issues. The study achieved technical breakthroughs and provides new perspectives and tools for the development of intelligent agriculture. In the task of agricultural disease detection, the proposed method demonstrated outstanding performance, achieving a precision, recall, and accuracy of 0.95, 0.92, and 0.94, respectively, significantly outperforming the other conventional deep learning models. These results indicate the method's effectiveness in identifying and accurately classifying various agricultural diseases, particularly excelling in handling subtle features and complex data. In the task of generating descriptive text from agricultural images, the method also exhibited impressive performance, with a precision, recall, and accuracy of 0.92, 0.88, and 0.91, respectively. This demonstrates that the method can not only deeply understand the content of agricultural images but also generate accurate and rich descriptive texts. The object detection experiment further validated the effectiveness of our approach, where the method achieved a precision, recall, and accuracy of 0.96, 0.91, and 0.94. This achievement highlights the method's capability for accurately locating and identifying agricultural targets, especially in complex environments. Overall, the approach in this study not only demonstrated exceptional performance in multiple tasks such as agricultural disease detection, image captioning, and object detection but also showcased the immense potential of multimodal data and deep learning technologies in the application of intelligent agriculture.

10.
Adv Mater ; 36(26): e2403489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556648

RESUMO

Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large-scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO-casein-Cu2+ layer with a brick-and-mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu2+, bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H+ transfer across the separators is not almost affected. With the protection of the GO-casein-Cu2+ separator, soluble small molecules, such as diquinoxalino[2,3-a:2',3'-c]phenazine,2,3,8,9,14,15-hexacyano (6CN-DQPZ) exhibit a high reversible capacity of 262.6 mA h g-1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g-1). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.

11.
Natl Sci Rev ; 11(4): nwae045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545446

RESUMO

Organic materials with rich active sites are good candidates of high-capacity anodes in aqueous batteries, but commonly low utilization of active sites limits their capacity. Herein, two isomers, symmetric and asymmetric hexaazatribenzanthraquinone (s-HATBAQ and a-HATBAQ), with rich active sites have been synthesized in a controllable manner. It has been revealed for the first time that a sulfuric acid catalyst can facilitate the stereoselective formation of s-HATBAQ. Attributed to the reduced steric hindrance in favor of proton insertion as well as the amorphous structure conducive to electrochemical dynamics, s-HATBAQ exhibits 1.5 times larger specific capacity than a-HATBAQ. Consequently, the electrode of s-HATBAQ with 50% reduced graphene oxide (s-HATBAQ-50%rGO) delivers a record high specific capacity of 405 mAh g-1 in H2SO4 electrolyte. Moreover, the assembled MnO2//s-HATBAQ-50%rGO aqueous proton full batteries show an exceptional cycling stability at 25°C and can maintain ∼92% capacity after 1000 cycles at 0.5 A g-1 at -80°C. This work demonstrates the controllable synthesis of isomers, showcases a wide-temperature-range prototype proton battery and highlights the significance of precise molecular structure modulation in organic energy storage.

12.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38539841

RESUMO

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by the abnormal alteration of hormone levels such as FSH and E2. POI causes infertility, severe daily life disturbances, and long-term health risks. However, the underlying mechanism remains largely unknown. In this study, we found that POI is associated with the cellular senescence of ovarian granulosa cells, and TRIM28 mediates oxidative stress (OS)-induced cellular senescence in granulosa cells. Mechanistically, OS causes a decrease in TRIM28 protein levels in KGN cells. Subsequently, it triggers an increase in the levels of autophagy marker proteins ATG5 and LC3B-II, and the downregulation of P62. Abnormal autophagy induces an increase in the levels of cellular senescence markers γ-H2A.X, P16, and P21, provoking cellular senescence in vitro. The overexpression of ovarian TRIM28 through a microinjection of lentivirus attenuated autophagy, cellular senescence, and follicular atresia in the ovaries of POI mice and improved mouse fertility in vivo. Our study highlights the triggers for POI, where the reduction of TRIM28, which is regulated by reactive oxygen species, causes follicular atresia and POI via triggering autophagy and inducing granulosa cell senescence. Shedding light on TRIM28 may represent a potential intervention strategy for POI.

13.
Proc Natl Acad Sci U S A ; 121(8): e2316716121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349874

RESUMO

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.

14.
BMC Vet Res ; 20(1): 53, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341563

RESUMO

BACKGROUND: Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT: A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS: These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.


Assuntos
Enterocytozoon , Microsporidiose , Humanos , Animais , Tipagem de Sequências Multilocus/veterinária , Enterocytozoon/genética , Raposas/genética , Cães Guaxinins , Epidemiologia Molecular , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Fezes , Prevalência , Filogenia , China/epidemiologia , Genótipo
15.
J Ovarian Res ; 17(1): 35, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317224

RESUMO

PURPOSE: PAQR7 plays a key role in cell apoptosis as a progesterone membrane receptor. The physiological mechanism of PAQR7 in ovarian function and its anti-apoptotic action in mammals remain poorly understood. METHODS: We first added 0.2 µM aminoglutethimide (AG), an inhibitor of endogenous progesterone (P4) secretion, and transfected siPAQR7 co-incubated with P4 in human KGN cells to identify granulosa cell apoptosis, respectively. Additionally, we used Paqr7 knockout (PAQR7 KO) mice to assess the role of PAQR7 in the ovary. RESULTS: The PAQR7 deficiency significantly increased apoptosis of KGN cells, and this significant difference disappeared following P4 supplementation. The Paqr7-/- female mice showed a prolonged estrous cycle, reduced follicular growth, increased the number of atresia follicles, and decreased the concentrations of E2 and AMH. The litters, litter sizes, and spontaneous ovulation in the Paqr7-/- mice were significantly decreased compared with the Paqr7+/+ mice. In addition, we also found low expression of PAQR7 in GCs from human follicular fluids of patients diagnosed with decreased ovarian reserve (DOR) and ovaries of mice with a DOR-like phenotype, respectively. CONCLUSIONS: The present study has identified that PAQR7 is involved in mouse ovarian function and fertilization potential. One possible mechanism is mediating the anti-apoptotic effect of P4 on GC apoptosis via the BCL-2/BAX/CASPASE-3 signaling pathway. The mechanism underlying the effect of PAQR7 on ovarian development and aging remains to be identified.


Assuntos
Progesterona , Receptores Acoplados a Proteínas G , Receptores de Progesterona , Animais , Feminino , Humanos , Camundongos , Apoptose , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402792

RESUMO

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Assuntos
Triclosan , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo
17.
Hereditas ; 161(1): 4, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38233949

RESUMO

BACKGROUND: Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization. METHODS: Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms. RESULTS: The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution. CONCLUSION: The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the "A: a" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.


Assuntos
Afibrinogenemia , Fibrinogênio , Mutação de Sentido Incorreto , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Fibrinogênio/genética , Mutação , Fenótipo
18.
Sci Rep ; 14(1): 774, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191906

RESUMO

We previously reported that circIGF1R is significantly downregulated in non-small cell lung cancer (NSCLC) cells and tissues. It inhibits cancer cell invasion and migration, although the underlying molecular mechanisms remain elusive. The invasion and migration of NSCLC cells was analyzed by routine in vivo and in vitro functional assays. Fluorescent in situ hybridization, luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay were performed to explore the molecular mechanisms. Mechanism of action of paclitaxel-induced RBFOX3-mediated inhibition of NSCLC invasion and migration was investigated through in vitro and in vivo experiments.Our study reveals that circIGF1R acts as a Competing Endogenous RNA (ceRNA) for miR-1270, thereby regulating Van-Gogh-like 2 (VANGL2) expression and subsequently inhibiting NSCLC cell invasion and migration via the Wnt pathway. We also found that RNA binding protein fox-1 homolog 3 (RBFOX3) enhances circIGF1R biogenesis by binding to IGF1R pre-mRNA, which in turn suppresses migration and invasion in NSCLC cells. Additionally, the chemotherapeutic drug paclitaxel was shown to impede NSCLC invasion and migration by inducing RBFOX3-mediated circIGF1R biogenesis.RBFOX3 inhibits the invasion and migration of NSCLC cells through the circIGF1R/ miR-1270/VANGL2 axis, circIGF1R has the potential to serve as a biomarker and therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Invasividade Neoplásica
19.
Small ; 20(25): e2310791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38214692

RESUMO

The evolution of porous membranes has revitalized their potential application in sustainable osmotic-energy conversion. However, the performance of multiporous membranes deviates significantly from the linear extrapolation of single-pore membranes, primarily due to the occurrence of ion-concentration polarization (ICP). This study proposes a robust strategy to overcome this challenge by incorporating photoelectric responsiveness into permselective membranes. By introducing light-induced electric fields within the membrane, the transport of ions is accelerated, leading to a reduction in the diffusion boundary layer and effectively mitigating the detrimental effects of ICP. The developed photoelectric-responsive covalent-organic-framework membranes exhibit an impressive output power density of 69.6 W m-2 under illumination, surpassing the commercial viability threshold by ≈14-fold. This research uncovers a previously unexplored benefit of integrating optical electric conversion with reverse electrodialysis, thereby enhancing energy conversion efficiency.

20.
Biol Reprod ; 110(4): 711-721, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38267364

RESUMO

Completion of fertilization is orchestrated by various ion channels in sperm membrane. Hyperpolarization of membrane potential, an indispensable event during the capacitation process, is dominated by sperm potassium channel (KSper). In addition to sperm-specific SLO3, which forms the channel pore, the auxiliary subunit leucine-rich-repeat-containing protein 52 (LRRC52) is required to form mKSper to function under physiological conditions. However, in human sperm, although most evidence supports that hSLO3 is the pore-forming subunit, whether hLRRC52 contributes to hKSper conductance and modulates sperm function remains to be understood. Here, using an extracellular segment that is homologous between mice and humans as an antigen, we developed a polyclonal antibody designed as LID1 that specifically detected mLRRC52 and performed co-immunoprecipitation with mSLO3. Additionally, patch-clamp recordings of mouse sperm showed that, physiological activation of mKSper and sperm functions were dramatically attenuated after treatment with LID1, indicating that LID1 functionally disrupted the regulation of mLRRC52 on mKSper. Next, LID1 was used to investigate the significance of hLRRC52 for hKSper activation. As a result, hLRRC52 was expressed in human sperm and might be assembled with hSLO3. More importantly, LID1 inhibited hKSper currents and depolarized sperm membrane potential, supporting essential modulation of hLRRC52 in hKSper. Ca2+ signaling of human sperm was also compromised in the presence of LID1, which impaired sperm motility and acrosome reaction. Because LID1 specifically inhibited both mKSper and hKSper but not mCatSper or hCatSper, our results suggest that hLRRC52 functions as an important component of hKSper and regulates sperm physiological functions.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Motilidade dos Espermatozoides , Humanos , Masculino , Animais , Camundongos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA