Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Environ Res ; : 119458, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925466

RESUMO

Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (P < 0.05), implying the prokaryotic community plays a role in reducing methane emissions within the rumen. Correspondingly, the networks within the prokaryotic community unveiled the crucial role of propionate/butyrate-producing bacteria in regulating methane emissions through microbial interactions. The predicted function of the prokaryotic community exhibited a significant reduction in the presence of the narB gene in seaweed-supplemented treatments. This reduction may facilitate an increased rate of electron flow toward the nitrate reduction pathway while decreasing the conversion of H2 to methane. These results indicated the supplementation of cultivated seaweeds and the enzymatic hydrolysates has the potential to reshape the community structure of rumen microbial communities, and this alteration appears to be a key factor contributing to their methane production-reduction capability.

2.
Front Microbiol ; 15: 1389805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933025

RESUMO

Bacterial degradation mechanism for high chlorinated pentachlorobiphenyl (PentaCB) with worse biodegradability has not been fully elucidated, which could limit the full remediation of environments afflicted by the complex pollution of polychlorinated biphenyls (PCBs). In this research, a new PentaCB-degrading bacterium Microbacterium paraoxydans that has not been reported was obtained using enzymatic screening method. The characteristics of its intracellular enzymes, proteome and metabolome variation during PentaCB degradation were investigated systematically compared to non-PentaCB conditions. The findings indicate that the degradation rate of PentaCB (1 mg/L) could reach 23.9% within 4 hours and achieve complete degradation within 12 hours, with the mixture of intracellular enzymes being most effective at a pH of 6.0. During the biodegradation of PentaCB, the 12 up-regulated proteins characterized included ABC transporter PentaCB-binding protein, translocase protein TatA, and signal peptidase I (SPase I), indicating the presence of functional proteins for PentaCB degradation in both the cytoplasm and the outer surface of the cytoplasmic membrane. Furthermore, five differentially enriched metabolites were strongly associated with the aforementioned proteins, especially the up-regulated 1, 2, 4-benzenetriol which feeds into multiple degradation pathways of benzoate, chlorocyclohexane, chlorobenzene and aminobenzoate. These relevant results help to understand and speculate the complex mechanisms regarding PentaCB degradation by M. paraoxydans, which have both theoretical and practical implications for PCB bioremediation.

3.
Fundam Res ; 4(1): 103-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933835

RESUMO

Oceanic uptake and storage of anthropogenic CO2 (CANT) are regulated by ocean circulation and ventilation. To decipher the storage and redistribution of CANT in the western North Pacific, where a major CANT sink develops, we investigated the water column carbonate system, dissolved inorganic radiocarbon and ancillary parameters in May and August 2018, spanning the Kuroshio Extension (KE, 35-39 °N), Kuroshio Recirculation (KR, 27-35 °N) and subtropical (21-27 °N) zones. Water column CANT inventories were estimated to be 40.5 ± 1.1 mol m-2 in the KR zone and 37.2 ± 0.9 mol m-2 in the subtropical zone. In comparison with historical data obtained in 2005, relatively high rates of increase of the CANT inventory of 1.05 ± 0.20 and 1.03 ± 0.12 mol m-2 yr-1 in the recent decade were obtained in the KR and subtropical zones, respectively. Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration, storage, and redistribution of CANT in those two regions. In the KE zone, however, both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology, where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow. The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution, storage, and transport in the western North Pacific.

4.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792054

RESUMO

Facile and sensitive methods for detecting neonicotinoids (NEOs) in aquatic environments are crucial because they are found in extremely low concentrations in complex matrices. Herein, nitrogen-based magnetic conjugated microporous polymers (Fe3O4@N-CMP) with quaternary ammonium groups were synthesized for efficient magnetic solid-phase extraction (MSPE) of NEOs from tap water, rainwater, and lake water. Fe3O4@N-CMP possessed a suitable specific surface area, extended π-conjugated system, and numerous cationic groups. These properties endow Fe3O4@N-CMP with superior extraction efficiency toward NEOs. The excellent adsorption capacity of Fe3O4@N-CMP toward NEOs was attributed to its π-π stacking, Lewis acid-base, and electrostatic interactions. The proposed MSPE-HPLC-DAD approach based on Fe3O4@N-CMP exhibited a wide linear range (0.1-200 µg/L), low detection limits (0.3-0.5 µg/L), satisfactory precision, and acceptable reproducibility under optimal conditions. In addition, the established method was effectively utilized for the analysis of NEOs in tap water, rainwater, and lake water. Excellent recoveries of NEOs at three spiked levels were in the range of 70.4 to 122.7%, with RSDs less than 10%. This study provides a reliable pretreatment method for monitoring NEOs in environmental water samples.

5.
Sci Total Environ ; 930: 172853, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685434

RESUMO

Enhancing silicate weathering to increase oceanic alkalinity, thereby facilitating the absorption of atmospheric carbon dioxide (CO2), is considered a highly promising technique for carbon sequestration. This study aims to evaluate the feasibility and potential of olivine-based ocean alkalinity enhancement (OAE) for the removal of atmospheric CO2 and its storage in seawater as bicarbonates in the East and South China Seas (ESCS). A particular focus is placed on the potential ecological impacts arising from the release of nickel (Ni) and chromium (Cr) during the olivine weathering process. We considered two extreme scenarios: one where Ni and Cr are entirely retained in seawater, and another where they are completely deposited in sediments. These scenarios respectively represent the maximum permissible concentrations of Ni and Cr in seawater and sediments during the OAE process. Current marine environmental quality standards (EQS) were utilized as the threshold limits for Ni and Cr in both seawater and sediment, with concentrations exceeding these EQS potentially leading to significant adverse effects on marine life. When all released Ni is retained in seawater, the allowable dosage of olivine varies from 0.05 to 13.7 kg/m2 (depending on olivine particle size, temperature, and water depth); when all released Ni is captured by sediment, the permissible addition of olivine ranges from 0.21 to 2.1 kg/m2 (depending on mixing depth). Given the low solubility of Cr, it is not necessary to consider the scenario where Cr exceeds the limit in seawater. The allowable amount of Cr entirely retained in sediments ranges from 0.69 to 47.2 kg/m2.In most scenarios, the accumulation of metals in sediments preferentially exceeds the corresponding threshold value rather than remaining in seawater. Therefore, we recommend using alkalization equipment to fully dissolve olivine before discharging into the sea, enabling a larger-scale application of olivine without significant negative ecological impacts.

6.
Adv Healthc Mater ; 12(30): e2301733, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660274

RESUMO

Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+  conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.


Assuntos
Peri-Implantite , Humanos , Peri-Implantite/tratamento farmacológico , Peri-Implantite/prevenção & controle , Minociclina , Antioxidantes/farmacologia , Fosfatidilinositol 3-Quinases , Tecido Conjuntivo
7.
Sci Total Environ ; 905: 167417, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774857

RESUMO

The eutrophication status in the central Bohai Sea tends to be mitigated in recent years. To explore the recent nutrient status, seasonal surveys were carried out from 2018 to 2021, covering both the Bohai Sea and the adjacent North Yellow Sea. In recent cold seasons, both dissolved inorganic nitrogen concentration (DIN) and the ratio of DIN to soluble reactive phosphorus were lower than those in 2016. In warm seasons, the variations in nutrients and apparent oxygen utilization were correlated with each other, roughly following the traditional Redfield ratio of N:P:O2 of approximately 16:1:(-138). When historical data for N*, which is the excess DIN related to soluble reactive phosphorus, was collated, the Bohai Sea showed a decreasing trend for N* at a rate of -0.64 ± 0.12 µmol N* kg-1 a-1 between 2011 and 2021. During the same period, the North Yellow Sea N* concentrations (i.e., the oceanic end-member of the Bohai Sea N* dynamics) and the local atmospheric nitrogen (N) deposition (atmospheric end-member) were estimated to decline at rates of -0.22 ± 0.04 µmol N* kg-1 a-1 and - 0.93 ± 0.34 kg N ha-1 a-2, respectively. Consequently, the oceanic and atmospheric changes accounted for 25.7 % ± 28.4 % and 69.0 % ± 42.6 %, respectively, of the Bohai Sea eutrophication mitigation in 2011-2021. On the long-term changes of the Bohai Sea eutrophication, the terrestrial nutrient source has only minor (likely <10 %) impacts, although it certainly affects the spatial distribution of nutrients. This study has implied that coastal eutrophication is a dynamic process that is subject to sea-land-air interactions, and its mitigation needs both local pollution controls and regional environment management. The latter contains the understanding of oceanic changes and external effects of the air pollution control.

8.
Front Immunol ; 14: 1149339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063854

RESUMO

Introduction: Periapical alveolar bone loss is the common consequence of apical periodontitis (AP) caused by persistent local inflammation around the apical area. Human stem cells from apical papilla (hSCAPs) play a crucial role in the restoration of bone lesions during AP. Studies have recently identified the critical role of microRNAs (miRNAs) involved in AP pathogenesis, but little is known about their function and potential molecular mechanism, especially in the osteogenesis of hSCAPs during AP. Here, we investigated the role of clinical sample-based specific miRNAs in the osteogenesis of hSCAPs. Methods: Differential expression of miRNAs were detected in the periapical tissues of normal and patients with AP via transcriptomic analysis, and the expression of miR-199a-5p was confirmed by qRT-PCR. Treatment of hSCAPs with miR-199a-5p mimics while loaded onto beta-tricalcium phosphate (ß-TCP) ceramic particle scaffold to explore its effect on osteogenesis in vivo. RNA binding protein immunoprecipitation (RIP) and Luciferase reporter assay were conducted to identify the target gene of miR-199a-5p. Results: The expression of miR-199a-5p was decreased in the periapical tissues of AP patients, and miR-199a-5p mimics markedly enhanced cell proliferation and osteogenic differentiation of hSCAPs, while miR-199a-5p antagomir dramatically attenuated hSCAPs osteogenesis. Moreover, we identified and confirmed Interferon Induced Protein with Tetratricopeptide Repeats 2 (IFIT2) as a specific target of miR-199a-5p, and silencing endogenous IFIT2 expression alleviated the inhibitory effect of miR-199a-5p antagomir on the osteogenic differentiation of hSCAPs. Furthermore, miR-199a-5p mimics transfected hSCAPs loaded onto beta-tricalcium phosphate (ß-TCP) scaffolds induced robust subcutaneous ectopic bone formation in vivo. Discussion: These results strengthen our understanding of predictors and facilitators of the key AP miRNAs (miR-199a-5p) in bone lesion repair under periapical inflammatory conditions. And the regulatory networks will be instrumental in exploring the underlying mechanisms of AP and lay the foundation for future regenerative medicine based on dental mesenchymal stem cells.


Assuntos
Proteínas Reguladoras de Apoptose , MicroRNAs , Periodontite Periapical , Proteínas de Ligação a RNA , Humanos , Antagomirs , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Periodontite Periapical/genética , Periodontite Periapical/terapia , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo
9.
Acta Biomater ; 156: 37-48, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455855

RESUMO

The sufficient imitation of tissue structures and components represents an effective and promising approach for tissue engineering and regenerative medicine applications. Dental pulp disease is one of the most common oral diseases, although functional pulp regeneration remains challenging. Herein, we propose a strategy that employs hydrogel microspheres incorporated with decellularized dental pulp matrix-derived bioactive factors to simulate a pulp-specific three-dimensional (3D) microenvironment. The dental pulp microenvironment-specific microspheres constructed by this regenerative strategy exhibited favorable plasticity, biocompatibility, and biological performances. Human dental pulp stem cells (hDPSCs) cultured on the constructed microspheres exhibited enhanced pulp-formation ability in vitro. Furthermore, the hDPSCs-microcarriers achieved the regeneration of pulp-like tissue and new dentin in a semi-orthotopic model in vivo. Mechanistically, the decellularized pulp matrix-derived bioactive factors mediated the multi-directional differentiation of hDPSCs to regenerate the pulp tissue by eliciting the secretion of crucial bioactive cues. Our findings demonstrated that a 3D dental pulp-specific microenvironment facilitated by hydrogel microspheres and dental pulp-specific bioactive factors regenerated the pulp-dentin complex and could be served as a promising treatment option for dental pulp disease. STATEMENT OF SIGNIFICANCE: Injectable bioscaffolds are increasingly used for regenerative endodontic treatment. Despite their success related to their ability to load stem cells, bioactive factors, and injectability, conventional bulk bioscaffolds have drawbacks such as ischemic necrosis in the central region. Various studies have shown that ischemic necrosis in the central region can be corrected by injectable hydrogel microspheres. Unfortunately, pristine microspheres or microspheres without dental pulp-specific bioactive factor would oftentimes fail to regulate stem cells fates in dental pulp multi-directional differentiation. Our present study reported the biofabrication of dental pulp-derived decellularized matrix functionalized gelatin microspheres, which contained dental pulp-specific bioactive factors and have the potential application in endodontic regeneration.


Assuntos
Doenças da Polpa Dentária , Hidrogéis , Humanos , Hidrogéis/farmacologia , Polpa Dentária , Microesferas , Regeneração , Diferenciação Celular , Necrose
10.
Stem Cell Res Ther ; 13(1): 535, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575551

RESUMO

BACKGROUND: BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS: Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS: BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS: The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.


Assuntos
Matriz Óssea , Ligamento Periodontal , Camundongos , Humanos , Masculino , Animais , Suínos , Regeneração Óssea , Células-Tronco/metabolismo , Osteogênese
11.
Sci Total Environ ; 852: 158411, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055486

RESUMO

Marine microbial communities assemble along a sediment depth gradient and are responsible for processing organic matter. Composition of the microbial community along the depth is affected by various biotic and abiotic factors, e.g., the change of redox gradient, the availability of organic matter, and the interactions of different taxa. The community structure is also subjected to some random changes caused by stochastic processes of birth, death, immigration and emigration. However, the high-resolution shifts of microbial community and mechanisms of the vertical assembly processes in marine sediments remain poorly described. Archaeal and bacterial communities were analyzed based on 16S rRNA gene amplicon sequencing and metagenomes in the Bohai Sea sediment samples. The archaeal community was dominated by Thaumarchaeota with increased alpha diversity along depth. Proteobacteria was the dominant bacterial group with decreased alpha diversity as depth increased. Sampling sites and depths collectively affected the beta-diversity for both archaeal and bacterial communities. The dominant mechanism determining archaeal community assembly was determinism, which was mostly contributed by homogeneous selection, i.e., consistent selection pressures in different locations or depths. In contrast, bacterial community assembly was dominated by stochasticity. Co-occurrence networks among different taxa and key functional genes revealed a tight community with low modularity in the bottom sediment, and disproportionately more interactions among low abundant ASVs. This suggests a significant contribution to community stabilization by rare taxa, and suggests that the bottom layer, rather than surface sediments may represent a hotspot for benthic microbial interactions.


Assuntos
Archaea , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Sedimentos Geológicos/química , Filogenia , Bactérias/genética
12.
Regen Med ; 17(10): 739-753, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35938412

RESUMO

Aim: The purpose of this study was to investigate the functions of exosomal miR-150 derived from bone marrow mesenchymal stem cells in osteonecrosis of the femoral head (ONFH). Materials & methods: Cell viability and apoptosis were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Alizarin red staining was performed to detect calcium deposits. A rat model was established to assess the effects of exosomal miR-150 on ONFH in vivo. Results: Exosomes or exosomal miR-150 derived from bone marrow mesenchymal stem cells inhibited TNF-α-induced osteoblast apoptosis and promoted osteogenic differentiation and autophagy. Exosomal miR-150 suppressed apoptosis and induced autophagy in TNF-α-treated osteoblasts by regulating the GREM1/NF-κB axis. Exosomal miR-150 also improved the pathological features of ONFH in vivo. Conclusion: Exosomal miR-150 alleviates ONFH by mediating the GREM1/NF-κB axis. This study provides a potential therapeutic strategy for ONFH.


Osteonecrosis of the femoral head (ONFH) is an orthopedic disease that frequently occurs in young adults aged less than 50 years. At present, there is no widely accepted curative surgical procedure or drug therapy for this disease. Bone marrow mesenchymal stem cells (BMSCs) play a key role in the progression of ONFH. BMSC-derived exosomes refer to small membrane vesicles that can transfer proteins, miRNAs and mRNAs, which are closely related to the development of ONFH. This study showed that exosomal miRNA-150 derived from BMSCs inhibited TNF-α-induced osteoblast apoptosis and promoted osteogenic differentiation and autophagy by regulating the GREM1/NF-κB axis. In addition, exosomal miRNA-150 alleviated the symptoms of ONFH in rats.


Assuntos
MicroRNAs , Osteonecrose , Animais , Apoptose , Citocinas/metabolismo , Cabeça do Fêmur , MicroRNAs/genética , NF-kappa B/farmacologia , Osteoblastos , Osteogênese , Osteonecrose/induzido quimicamente , Osteonecrose/patologia , Ratos , Fator de Necrose Tumoral alfa/farmacologia
13.
Front Bioeng Biotechnol ; 10: 882631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694236

RESUMO

In the repair of alveolar bone defect, the microstructure of bone graft scaffolds is pivotal for their biological and biomechanical properties. However, it is currently controversial whether gradient structures perform better in biology and biomechanics than homogeneous structures when considering microstructural design. In this research, bioactive ceramic scaffolds with different porous gradient structures were designed and fabricated by 3D printing technology. Compression test, finite element analysis (FEA) revealed statistically significant differences in the biomechanical properties of three types of scaffolds. The mechanical properties of scaffolds approached the natural cancellous bone, and scaffolds with pore size decreased from the center to the perimeter (GII) had superior mechanical properties among the three groups. While in the simulation of Computational Fluid Dynamics (CFD), scaffolds with pore size increased from the center to the perimeter (GI) possessed the best permeability and largest flow velocity. Scaffolds were cultured in vitro with rBMSC or implanted in vivo for 4 or 8 weeks. Porous ceramics showed excellent biocompatibility. Results of in vivo were analysed by using micro-CT, concentric rings and VG staining. The GI was superior to the other groups with respect to osteogenicity. The Un (uniformed pore size) was slightly inferior to the GII. The concentric rings analysis demonstrated that the new bone in the GI was distributed in the periphery of defect area, whereas the GII was distributed in the center region. This study offers basic strategies and concepts for future design and development of scaffolds for the clinical restoration of alveolar bone defect.

14.
Genes Dis ; 9(1): 95-107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005110

RESUMO

SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.

15.
Chemosphere ; 289: 133207, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890619

RESUMO

Crude oil contamination greatly influence soil bacterial community. Proliferative microbes in the crude oil-contaminated soil are closely related to the living conditions. Oil wells in the Yellow River Delta Natural Reserve (YRDNR) region is an ideal site for investigating the bacterial community of crude oil-contaminated saline soil. In the present study, 18 soil samples were collected from the depths of 0-20 cm and 20-40 cm around the oil wells in the YRDNR. The bacterial community profile was analyzed through high-throughput sequencing to trace the oil-degrading aerobic and anaerobic bacteria. The results indicated that C15-C28 and C29-C38 were the main fractions of total petroleum hydrocarbon (TPH) in the sampled soil. These TPH fractions had a significant negative effect on bacterial biodiversity (Shannon, Simpson, and Chao1 indices), which led to the proliferation of hydrocarbon-degrading bacteria. A comprehensive analysis between the environmental factors and soil microbial community structure showed that Streptococcus, Bacillus, Sphingomonas, and Arthrobacter were the aerobic hydrocarbon-degrading bacteria; unidentified Rhodobacteraceae and Porticoccus were considered to be the possible facultative anaerobic bacteria with hydrocarbon biodegradation ability; Acidithiobacillus, SAR324 clade, and Nitrosarchaeum were predicted to be the anaerobic hydrocarbon-degrading bacteria in the sub-surface soil. Furthermore, large amount of carbon sources derived from TPH was found to cause depletion of bioavailable nitrogen in the soil. The bacteria associated with nitrogen transformation, such as Solirubrobacter, Candidatus Udaeobacter, Lysinibacillus, Bradyrhizobium, Sphingomonas, Mycobacterium, and Acidithiobacillus, were highly abundant; these bacteria may possess the ability to increase nitrogen availability in the crude oil-contaminated soil. The bacterial community functions were significantly different between the surface and the sub-surface soil, and the dissolved oxygen concentration in soil was considered to be potential influencing factor. Our results could provide useful information for the bioremediation of crude oil-contaminated saline soil.


Assuntos
Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Rios , Solo , Microbiologia do Solo , Poluentes do Solo/análise
16.
J Investig Med ; 70(3): 837-843, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893517

RESUMO

This meta-analysis and systematic review investigated the efficacy of bisphosphonates on the incidence of hip fracture (IHF) in patients of different ages with osteoporosis or osteopenia. We searched Web of Science, Embase, the Cochrane Database, and PubMed from inception to January 10, 2021, for trials reporting the effects of bisphosphonates on the IHF. We included only randomized, double-blind, placebo-controlled clinical trials. We pooled data using a random-effects meta-analysis with risk ratios (RRs) and reported 95% CIs. We also used the Cochran Q and I² statistics to assess the heterogeneity in the results of individual studies. The primary endpoints were the total numbers of people in the bisphosphonates and placebo groups and the numbers of IHFs during the follow-up periods. Bisphosphonates reduced the IHF with an overall effect (RR: 0.66; 95% CI: 0.56 to 0.77; zoledronic acid: RR: 0.60; 95% CI: 0.46 to 0.78; risedronate: RR: 0.74; 95% CI: 0.59 to 0.94, and alendronate: RR: 0.61; 95% CI: 0.40 to 0.95). The result of the heterogeneity assessment was I²=0, p=0.97. In all age groups (all ages, ≥55 years old, ≥65 years old), bisphosphonates reduced the IHF. In the ≥55 years old and ≥65 years old age groups, the RR and 95% CI were 0.63 and 0.43 to 0.93, and 0.60 and 0.44 to 0.81, respectively. Bisphosphonate reduced the IHF in the general population and all age groups (≥55 years old and ≥65 years old). Zoledronic acid, risedronate and alendronate reduced the IHF in osteoporosis or osteopenia populations. The association between bisphosphonate and the IHF does not appear to be influenced by age.


Assuntos
Conservadores da Densidade Óssea , Fraturas do Quadril , Osteoporose , Idoso , Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Fraturas do Quadril/complicações , Fraturas do Quadril/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Osteoporose/complicações , Osteoporose/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácido Risedrônico/uso terapêutico , Ácido Zoledrônico/uso terapêutico
17.
Small ; 18(3): e2101699, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817129

RESUMO

High-performance hemostasis has become increasingly essential in treating various traumas. However, available topical hemostats still have various drawbacks and side-effects. Herein, hemostatic powders derived from the skin secretion of Andrias davidianus (SSAD) with controllable particle size are prepared using feasible frozen-ball milling following lyophilization for hemorrhage-control. Scanning electron microscopy, rheometry, and Brunauer-Emmett-Teller test are used to characterize the coagulation-promoting surface topography, rheological properties, and porous structure of the SSAD particles. The blood-coagulation assays showed that the SSAD powders can induce blood-absorption in a particle size-dependent manner. Particle sizes of the SSAD powders larger than 200 µm and smaller than 800 µm greatly affect the blood-clotting rate. Associated with the thromboelastography (TEG) and amino acid/protein composition analyses, the accessibility and diffusion of blood are mainly dependent on the wettability, adhesivity, and clotting factors of the SSAD particles. Rapid hemostasis in vivo further involves three hemorrhage models (liver, femoral artery, and tail) as well as an oral wound model, which suggest favorable hemostatic and simultaneous regenerative effects of the SSAD hemostatic powder. Considering its degradability and good biocompatibility, SSAD can be an optimal candidate for a new class of inexpensive, natural, and promising hemostatic and wound-dressing agent.


Assuntos
Hemostasia , Hemostáticos , Coagulação Sanguínea , Hemostáticos/farmacologia , Pós/farmacologia , Cicatrização
18.
Front Bioeng Biotechnol ; 10: 904012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601392

RESUMO

Background: For total knee arthroplasty (TKA), the optimal rotational position of the femoral component is felt to be critically important. The current knee joint kinematics measurement technology is unable to identify the exact rotation axis of the knee joint, the main reasons being low measurement accuracy and insufficient three-dimensional data (2D-3D image matching technology). In order to improve the effect of TKA surgery, we proposed a knee joint kinematics measurement method, based on the MRI technology, and verified its measurement accuracy. We then employed this method to identify the personalized optimal rotation axis of the knee joint for TKA patients. Purposes: The purpose of the study was 1) to propose a method for measuring knee joint kinematics and verify its accuracy and 2) to propose a method for determining the optimal rotation axis of knee joint for TKA surgery, based on accurate kinematic measurement results. Materials and Methods: The experiment was divided into two parts: in vitro and in vivo. The purpose of the in vitro experiment was to verify the measurement accuracy of our method. We fixed two aquarium stones (approximately 10 cm * 10 cm * 10 cm in size, close to the size of the distal femur and proximal tibia) firmly on the fixed and moving arms of the goniometer/vernier caliper with glue and immersed the aquarium stones in the water to capture MRI images. The MRI images were then processed with MATLAB software, and the relative motion of the two aquarium stones was measured. The measurement accuracy of our method was verified via the scale reading of the moving arm on the goniometer/vernier caliper. In vivo, 36 healthy elderly participants (22 females, 14 males) were recruited from the local community; our method was then employed to measure the relative motion of the tibia and femur and to observe the rollback and screw home motion of the medial/lateral condyle of the femur, which was identified as specific kinematic features of the knee joint. Results: In vitro, all measurements were accurate to <1 mm and <1°. In vivo, all knee measurements showed rollback motion (the rollback distance of the medial femoral condyle was 18.1 ± 3.7 mm and that of the lateral condyle was 31.1 ± 7.3 mm) and screw home motion. Conclusion: In the application scenario of knee joint kinematics measurement, our method has an accuracy of <1° of rotation angle and <1 mm of translation for all reference points, and it can be employed to identify the most stable axis of the knee joint. Significance: Using our method to accumulate data on the knee rotation axis of more subjects to establish an average rotation axis of a given population may help in knee prosthesis design and reduce the patient dissatisfaction rate. Individually measuring the patient's rotation axis before TKA surgery and adjusting the prosthesis installation in TKA may further reduce the patient dissatisfaction rate, and automatic computer measurement may be realized in the future, but it is still time-consuming for now.

19.
Sci Total Environ ; 791: 148097, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412405

RESUMO

The Bohai Sea has recently suffered several seasonal oxygen-deficiency, even hypoxia events during the summer. To better understand effects of dissolved oxygen (DO) concentration on the bacterial composition in particle attached (PA) and free living (FL) fractions during the transition from oxic water to low oxygen conditions, the bacterial communities under three different oxygen levels, i.e., high oxygen (HO, close to 100% O2 saturation), medium oxygen (MO, close to 75% O2 saturation), and low oxygen (LO, close to 50% O2 saturation) in the Bohai Sea were investigated using 16S rRNA amplicon sequencing. Fourteen water samples from 5 stations were collected during a cruise from August to September in 2018. The results showed that the sequences of Proteobacteria and Actinobacteriota jointly accounted for up to 74% across all 14 samples. The Shannon index in HO samples were significantly higher than in LO samples (P < 0.05), especially in PA communities. The composition of bacterial communities varied by oxygen concentration in all samples, and the effect was more pronounced in the PA fraction, which indicates that the PA fraction was more sensitive to the change in oxygen concentration, possibly due to the tighter interactions in this community than in the FL fraction. This study provides novel insights into the distribution of bacterial communities, and clues for understanding the responses of bacterial communities in the Bohai Sea during the transition from the oxic to oxygen-deficient zones.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , Humanos , Hipóxia , Oxigênio , Filogenia , RNA Ribossômico 16S/genética
20.
Ann Transl Med ; 9(9): 763, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268376

RESUMO

BACKGROUND: An accurate diagnosis of deep caries and pulpitis on periapical radiographs is a clinical challenge. METHODS: A total of 844 radiographs were included in this study. Of the 844, 717 (85%) were used for training and 127 (15%) were used for testing the three convolutional neural networks (CNNs) (VGG19, Inception V3, and ResNet18). The performance [accuracy, precision, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC)] of the CNNs were evaluated and compared. The CNN model with the best performance was further integrated with clinical parameters to see whether multi-modal CNN could provide an enhanced performance. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique illustrates what image feature was the most important for the CNNs. RESULTS: The CNN of ResNet18 demonstrated the best performance [accuracy =0.82, 95% confidence interval (CI): 0.80-0.84; precision =0.81, 95% CI: 0.73-0.89; sensitivity =0.85, 95% CI: 0.79-0.91; specificity =0.82, 95% CI: 0.76-0.88; and AUC =0.89, 95% CI: 0.86-0.92], compared with VGG19 and Inception V3 as well as the comparator dentists. Therefore, ResNet18 was chosen to integrate with clinical parameters to produce the multi-modal CNN of ResNet18 + C, which showed a significantly enhanced performance (accuracy =0.86, 95% CI: 0.84-0.88; precision =0.85, 95% CI: 0.76-0.94; sensitivity =0.89, 95% CI: 0.83-0.95; specificity =0.86, 95% CI: 0.79-0.93; and AUC =0.94, 95% CI: 0.91-0.97). CONCLUSIONS: The CNN of ResNet18 showed good performance (accuracy, precision, sensitivity, specificity, and AUC) for the diagnosis of deep caries and pulpitis. The multi-modal CNN of ResNet18 + C (ResNet18 integrated with clinical parameters) demonstrated a significantly enhanced performance, with promising potential for the diagnosis of deep caries and pulpitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA