Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
2.
Plant Cell Environ ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946254

RESUMO

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

3.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999683

RESUMO

Due to the existence of cotton weeds in a complex cotton field environment with many different species, dense distribution, partial occlusion, and small target phenomena, the use of the YOLO algorithm is prone to problems such as low detection accuracy, serious misdetection, etc. In this study, we propose a YOLOv8-DMAS model for the detection of cotton weeds in complex environments based on the YOLOv8 detection algorithm. To enhance the ability of the model to capture multi-scale features of different weeds, all the BottleNeck are replaced by the Dilation-wise Residual Module (DWR) in the C2f network, and the Multi-Scale module (MSBlock) is added in the last layer of the backbone. Additionally, a small-target detection layer is added to the head structure to avoid the omission of small-target weed detection, and the Adaptively Spatial Feature Fusion mechanism (ASFF) is used to improve the detection head to solve the spatial inconsistency problem of feature fusion. Finally, the original Non-maximum suppression (NMS) method is replaced with SoftNMS to improve the accuracy under dense weed detection. In comparison to YOLO v8s, the experimental results show that the improved YOLOv8-DMAS improves accuracy, recall, mAP0.5, and mAP0.5:0.95 by 1.7%, 3.8%, 2.1%, and 3.7%, respectively. Furthermore, compared to the mature target detection algorithms YOLOv5s, YOLOv7, and SSD, it improves 4.8%, 4.5%, and 5.9% on mAP0.5:0.95, respectively. The results show that the improved model could accurately detect cotton weeds in complex field environments in real time and provide technical support for intelligent weeding research.

4.
Anal Methods ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975707

RESUMO

A novel electrochemical gas sensor for sensitive detection of H2S at room temperature is constructed based on the Fe@Pt/C composite material. The core-shell structured Fe@Pt catalyst was synthesized by a two-step reduction method and physically dispersed in Vulcan XC-72 carbon powders. The core-shell structure increases the effective catalytic surface area of Pt while significantly reducing the usage of the noble metal Pt, leading to improved catalytic performance and decreased production costs. Additionally, the mature screen-printing process is used to coat the catalyst film. A waterproof and breathable PTFE film was used as the substrate and the parameters in the screen printing process were also optimized to achieve the best gas sensing performance of the electrode film. Through the detection of hydrogen sulfide (H2S) with different concentrations, it is found that the sensor strictly shows linear correlation in the range of 1-20 ppm, R2 = 0.99974. Notably, the sensor exhibits high sensitivity (658.45 nA ppm-1) and a low detection limit of 0.33 ppm. Moreover, the consistency and stability of the sensor are satisfactory. The constructed gas sensor is expected to be well applied to industrial H2S detection.

5.
Open Med (Wars) ; 19(1): 20240975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883335

RESUMO

Objective: Sympathetic hyperinnervation following myocardial infarction (MI) is one of the primary causes of ventricular arrhythmias (VAs) after MI. Nerve growth factor (NGF) is a key molecule that induces sympathetic nerve remodeling. Previous studies have confirmed that microRNA (miR)-let-7a interacts with NGF. However, whether miR-let-7a is involved in sympathetic remodeling after MI remains unknown. We aimed to investigate whether miR-let-7a was associated with the occurrence of VA after MI. Methods and results: A rat model of myocardial infarction was established using left coronary artery ligation. miR-let-7a expression levels were analyzed by reverse transcription-quantitative PCR. Western blotting was also used to examine NGF expression levels in vivo and in M1 macrophages in vitro. The relationship between miR-let-7a and NGF levels was investigated using a luciferase reporter assay. The results revealed that the expression of miR-let-7a decreased significantly after MI, while NGF expression was significantly upregulated. In addition, overexpression of miR-let-7a effectively inhibited NGF expression in rats, which was also verified in M1 macrophages. Tyrosine hydroxylase and growth-associated protein 43 immunofluorescence results revealed that the administration of a miR-let-7a overexpression lentivirus to rats inhibited sympathetic remodeling after MI. Programmed electrical stimulation, renal sympathetic nerve activity recording, and heart rate variability measurements showed that miR-let-7a overexpression decreased sympathetic activity. Conclusions: These findings provide novel insights into the molecular mechanisms by which miR-let-7a and NGF contribute to the progression of sympathetic nerve remodeling after MI. Therefore, miR-let-7a may be a promising therapeutic target to reduce the incidence of arrhythmia following MI.

6.
Sci Total Environ ; 946: 174242, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917896

RESUMO

This paper discusses the influence of the digital economy (DE) on carbon emissions based on evidence at the global level. Specifically, based on the panel data from 80 countries from 2010 to 2020, this paper creates a DE measurement index and uses the System-GMM model to assess the influence of DE on carbon emissions. The results show that: (1) The development of DE significantly promotes carbon emissions reduction. (2) The development of DE significantly promotes carbon emissions reduction through technological advancement, structural optimization, and educational enhancement; (3) Regulatory quality and financial development play a positively moderating role in DE's promoting effect on carbon emissions reduction; (4) DE of European and North American nations have stronger promoting effect on carbon emissions reduction than DE of other countries. Compared to DE of developing countries, DE of developed countries has a stronger promoting effect on carbon emissions reduction. Additionally, this paper also finds that institutional differences can impact the carbon emission reduction effects of DE. Based on the results, this paper suggests that governments globally should promote the development of DE and foster international cooperation to enhance DE's driving role in promoting carbon emissions reduction.

7.
Lipids Health Dis ; 23(1): 180, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862993

RESUMO

BACKGROUND: The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS: Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS: A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS: This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.


Assuntos
Autofagia , Barreira Hematotesticular , Bussulfano , Caprilatos , Estresse Oxidativo , Células de Sertoli , Espermatogênese , Masculino , Animais , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Bussulfano/efeitos adversos , Caprilatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Humanos , Espermatogênese/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/patologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Adulto
8.
China CDC Wkly ; 6(19): 413-417, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38854753

RESUMO

What is already known on this topic?: There is a lack of comprehensive data on the coverage of the human papillomavirus (HPV) vaccine in China. The limited published literature hampers our ability to accurately assess the current situation. What is added by this report?: This study aimed to determine the rates of HPV vaccine coverage based on data from the electronic vaccination registry reported to the China Immunization Information System between 2017 and 2022. While there was an increase in HPV vaccine coverage each year, the overall coverage remained below the optimal level. What are the implications for public health practice?: This study presents evidence of low HPV vaccine coverage when administered outside of a national immunization program. Therefore, it is recommended that the HPV vaccine be included in the National Immunization Program in order to meet the 2030 WHO target of achieving 90% vaccination coverage for girls by the age of 15.

9.
J Am Chem Soc ; 146(25): 17508-17516, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861394

RESUMO

The electron-rich characteristic and low work function endow electrides with excellent performance in (opto)electronics and catalytic applications; these two features are closely related to the structural topology, constituents, and valence electron concentration of electrides. However, the synthesized electrides, especially two-dimensional (2D) electrides, are limited to specific structural prototypes and anionic p-block elements. Here we synthesize and identify a distinct 2D electride of BaCu with delocalized anionic electrons confined to the interlayer spaces of the BaCu framework. The bonding between Cu and Ba atoms exhibits ionic characteristics, and the adjacent Cu anions form a planar honeycomb structure with metallic Cu-Cu bonding. The negatively charged Cu ions are revealed by the theoretical calculations and experimental X-ray absorption near-edge structure. Physical property measurements reveal that BaCu electride has a high electronic conductivity (ρ = 3.20 µΩ cm) and a low work function (2.5 eV), attributed to the metallic Cu-Cu bonding and delocalized anionic electrons. In contrast to typical ionic 2D electrides with p-block anions, density functional theory calculations find that the orbital hybridization between the delocalized anionic electrons and BaCu framework leads to unique isotropic physical properties, such as mechanical properties, and work function. The freestanding BaCu monolayer with half-metal conductivity exhibits low exfoliation energy (0.84 J/m2) and high mechanical/thermal stability, suggesting the potential to achieve low-dimensional BaCu from the bulk. Our results expand the space for the structure and attributes of 2D electrides, facilitating the discovery and potential application of novel 2D electrides with transition metal anions.

11.
Adv Mater ; : e2400670, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830613

RESUMO

Two-dimensional ultrathin ferroelectrics have attracted much interest due to their potential application in high-density integration of non-volatile memory devices. Recently, 2D van der Waals ferroelectric based on interlayer translation has been reported in twisted bilayer h-BN and transition metal dichalcogenides (TMDs). However, sliding ferroelectricity is not well studied in non-twisted homo-bilayer TMD grown directly by chemical vapor deposition (CVD). In this paper, for the first time, experimental observation of a room-temperature out-of-plane ferroelectric switch in semiconducting bilayer 3R MoS2 synthesized by reverse-flow CVD is reported. Piezoelectric force microscopy (PFM) hysteretic loops and first principle calculations demonstrate that the ferroelectric nature and polarization switching processes are based on interlayer sliding. The vertical Au/3R MoS2/Pt device exhibits a switchable diode effect. Polarization modulated Schottky barrier height and polarization coupling of interfacial deep states trapping/detrapping may serve in coordination to determine switchable diode effect. The room-temperature ferroelectricity of CVD-grown MoS2 will proceed with the potential wafer-scale integration of 2D TMDs in the logic circuit.

12.
Methods Mol Biol ; 2820: 29-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941012

RESUMO

Soil metaproteomics could explore the proteins involved in life activities and their abundance in the soils to overcome the difficulty in pure cultures of soil microorganisms and the limitations of proteomics of pure cultures. However, the complexity and heterogeneity of soil composition, the low abundance of soil proteins, and the presence of massive interfering substances (including humic compounds) generally lead to an extremely low extraction efficiency of soil proteins. Therefore, the efficient extraction of soil proteins is a prerequisite and bottleneck problem in soil metaproteomics. In this chapter, a soil protein extraction method suitable for most types of soils with low cost and enabling simple operation (about 150 µg protein can be extracted from 5.0 g soil) is described. The quantity and purity of the extracted soil proteins could meet the requirements for further analysis using routine mass spectrometry-based proteomics.


Assuntos
Proteômica , Solo , Solo/química , Proteômica/métodos , Proteínas/isolamento & purificação , Proteínas/análise , Microbiologia do Solo , Espectrometria de Massas/métodos
13.
Methods Mol Biol ; 2820: 139-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941021

RESUMO

Our understanding of how fungi respond and adapt to external environments can be increased by the comprehensive data sets of fungal-secreted proteins. Fungi produce a variety of secreted proteins, and environmental conditions can easily influence the fungal secretome. However, the low abundance of secreted proteins and their post-translational modifications make protein extraction more challenging. Hence, the enrichment of secreted proteins is a crucial procedure for secretome analysis. This chapter illustrates a protocol for iTRAQ-based quantitative secretome analysis describing the example of fungi exposed to different environmental conditions. The fungal-secreted proteins can be extracted by combining ultrafiltration and TCA-acetone precipitation. Subsequently, the secreted proteins can be identified and quantified by the iTRAQ-based quantitative proteomics approach.


Assuntos
Proteínas Fúngicas , Proteômica , Proteômica/métodos , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteoma , Ultrafiltração/métodos , Cromatografia Líquida/métodos
14.
Cell Death Discov ; 10(1): 208, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693111

RESUMO

La-related proteins (LARPs) regulate gene expression by binding to RNAs and exhibit critical effects on disease progression, including tumors. However, the role of LARP4B and its underlying mechanisms in the progression of hepatocellular carcinoma (HCC) remain largely unclear. In this study, we found that LARP4B expression is upregulated and correlates with poor prognosis in patients with HCC. Gain- and loss-of-function assays showed that LARP4B promotes stemness, proliferation, metastasis, and angiogenesis in vitro and in vivo. Furthermore, LARP4B inhibition enhances the antitumor effects of sorafenib and blocks the metastasis-enhancing effects of low sorafenib concentrations in HCC. Mechanistically, LARP4B expression is upregulated by METTL3-mediated N6-methyladenosine (m6A)-IGF2BP3-dependent modification in HCC. RNA- and RNA immunoprecipitation (RIP)- sequencing uncovered that LARP4B upregulates SPINK1 by binding to SPINK1 mRNA via the La motif and maintaining mRNA stability. LARP4B activates the SPINK1-mediated EGFR signaling pathway, which supports stemness, progression and sorafenib resistance in HCC. Additionally, a positive feedback loop with the LARP4B/SPINK1/p-AKT/C/EBP-ß axis is responsible for the sorafenib-therapeutic benefit of LARP4B depletion. Overall, this study demonstrated that LARP4B facilitates HCC progression, and LARP4B inhibition provides benefits to sorafenib treatment in HCC, suggesting that LARP4B might be a potential therapeutic target for HCC.

15.
Adv Sci (Weinh) ; 11(26): e2403894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704696

RESUMO

As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S-nitrosoglutathione reductase GSNOR-mediated de-nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S-nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de-nitrosylation. Removing S-nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR-mediated de-nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.


Assuntos
Óxido Nítrico , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Óxido Nítrico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteômica/métodos , Ascomicetos/metabolismo , Ascomicetos/genética
16.
Clin Transl Med ; 14(6): e1727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804617

RESUMO

BACKGROUND: The liver is anatomically divided into eight segments based on the distribution of Glisson's triad. However, the molecular mechanisms underlying each segment and its association with hepatocellular carcinoma (HCC) heterogeneity are not well understood. In this study, our objective is to conduct a comprehensive multiomics profiling of the segmentation atlas in order to investigate potential subtypes and therapeutic approaches for HCC. METHODS: A high throughput liquid chromatography-tandem mass spectrometer strategy was employed to comprehensively analyse proteome, lipidome and metabolome data, with a focus on segment-resolved multiomics profiling. To classify HCC subtypes, the obtained data with normal reference profiling were integrated. Additionally, potential therapeutic targets for HCC were identified using immunohistochemistry assays. The effectiveness of these targets were further validated through patient-derived organoid (PDO) assays. RESULTS: A multiomics profiling of 8536 high-confidence proteins, 1029 polar metabolites and 3381 nonredundant lipids was performed to analyse the segmentation atlas of HCC. The analysis of the data revealed that in normal adjacent tissues, the left lobe was primarily involved in energy metabolism, while the right lobe was associated with small molecule metabolism. Based on the normal reference atlas, HCC patients with segment-resolved classification were divided into three subtypes. The C1 subtype showed enrichment in ribosome biogenesis, the C2 subtype exhibited an intermediate phenotype, while the C3 subtype was closely associated with neutrophil degranulation. Furthermore, using the PDO assay, exportin 1 (XPO1) and 5-lipoxygenase (ALOX5) were identified as potential targets for the C1 and C3 subtypes, respectively. CONCLUSION: Our extensive analysis of the segmentation atlas in multiomics profiling defines molecular subtypes of HCC and uncovers potential therapeutic strategies that have the potential to enhance the prognosis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Masculino , Multiômica
17.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610581

RESUMO

Real-time acquisition of location information for agricultural robotic systems is a prerequisite for achieving high-precision intelligent navigation. This paper proposes a data filtering and combined positioning method, and establishes an active screening model. The dynamic and static positioning drift points of the carrier are eliminated or replaced, reducing the complexity of the original Global Navigation Satellite System (GNSS) output data in the positioning system. Compared with the traditional Kalman filter combined positioning method, the proposed active filtering-Kalman filter algorithm can reduce the maximum distance deviation of the carrier along a straight line from 0.145 m to 0.055 m and along a curve from 0.184 m to 0.0640 m. This study focuses on agricultural robot positioning technology, which has an important influence on the development of smart agriculture.

18.
Front Immunol ; 15: 1365591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650947

RESUMO

Background: systemic inflammation disorders were observed in chronic kidney disease (CKD). Whether the systemic inflammatory indicators could be optimal predictors for the survival of CKD remains less studied. Methods: In this study, participants were selected from the datasets of the National Health and Nutrition Examination Survey (NHANES) between 1999 to 2018 years. Four systemic inflammatory indicators were evaluated by the peripheral blood tests including systemic immune-inflammation index (SII, platelet*neutrophil/lymphocyte), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR). Kaplan-Meier curves, restricted cubic spline (RCS), and Cox regression analysis were used to evaluate the association between the inflammatory index with the all-cause mortality of CKD. Receiver operating characteristic (ROC) and concordance index (C-index) were used to determine the predictive accuracy of varied systemic inflammatory indicators. Sensitive analyses were conducted to validate the robustness of the main findings. Results: A total of 6,880 participants were included in this study. The mean age was 67.03 years old. Among the study population, the mean levels of systemic inflammatory indicators were 588.35 in SII, 2.45 in NLR, 133.85 in PLR, and 3.76 in LMR, respectively. The systemic inflammatory indicators of SII, NLR, and PLR were all significantly positively associated with the all-cause mortality of CKD patients, whereas the high value of LMR played a protectable role in CKD patients. NLR and LMR were the leading predictors in the survival of CKD patients [Hazard ratio (HR) =1.21, 95% confidence interval (CI): 1.07-1.36, p = 0.003 (3rd quartile), HR = 1.52, 95%CI: 1.35-1.72, p<0.001 (4th quartile) in NLR, and HR = 0.83, 95%CI: 0.75-0.92, p<0.001 (2nd quartile), HR = 0.73, 95%CI: 0.65-0.82, p<0.001 (3rd quartile), and = 0.74, 95%CI: 0.65-0.83, p<0.001 (4th quartile) in LMR], with a C-index of 0.612 and 0.624, respectively. The RCS curves showed non-linearity between systemic inflammatory indicators and all-cause mortality risk of the CKD population. Conclusion: Our study highlights that systemic inflammatory indicators are important for predicting the survival of the U.S. population with CKD. The systemic inflammatory indicators would add additional clinical value to the health care of the CKD population.


Assuntos
Inflamação , Inquéritos Nutricionais , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/imunologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Inflamação/sangue , Inflamação/imunologia , Neutrófilos/imunologia , Biomarcadores/sangue , Linfócitos/imunologia , Prognóstico , Monócitos/imunologia
19.
Int Immunopharmacol ; 132: 111779, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581987

RESUMO

This study aimed to investigate the molecular mechanism of the effect of PDCD4 on radiotherapy-induced acute kidney injury (AKI) in rectal cancer through the regulation of FGR/NF-κB signaling. Differentially expressed genes were identified using Gene Expression Omnibus (GEO) datasets (GSE90627 for rectal cancer and GSE145085 for AKI) and R software. The human renal tubular epithelial cell line, HK-2, was used to establish an in vitro model of radiotherapy-induced AKI. RT-qPCR and western blotting were used to detect gene and protein expression levels, respectively. Cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. The malondialdehyde and superoxide dismutase levels in the cell culture supernatants were determined. Additionally, an in vivo AKI model was established using BALB/c mice, and kidney tissue morphology, expression of the renal injury molecule KIM-1, apoptosis of renal tubular cells, and TAS and TOS in serum were evaluated. Bioinformatics analysis revealed the upregulated expression of PDCD4 in AKI. In vitro experiments demonstrated that PDCD4 induced apoptosis in renal tubular cells by promoting FGR expression, which activated the NF-κB signaling pathway and triggered an oxidative stress response. In vivo animal experiments confirmed that PDCD4 promoted oxidative stress response and radiotherapy-induced AKI through the activation of the FGR/NF-κB signaling pathway. Silencing PDCD4 attenuated radiotherapy-induced AKI. Our findings suggest that PDCD4 may induce radiotherapy-induced AKI in rectal cancer by promoting FGR expression, activating the NF-κB signaling pathway, and triggering an oxidative stress response.


Assuntos
Injúria Renal Aguda , Proteínas Reguladoras de Apoptose , Camundongos Endogâmicos BALB C , NF-kappa B , Estresse Oxidativo , Proteínas de Ligação a RNA , Neoplasias Retais , Transdução de Sinais , Animais , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , NF-kappa B/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Neoplasias Retais/radioterapia , Neoplasias Retais/genética , Apoptose , Masculino , Linhagem Celular
20.
Adv Mater ; 36(27): e2400333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652082

RESUMO

Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Tecnologia sem Fio/instrumentação , Humanos , Desenho de Equipamento , Nanoestruturas/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA