Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.587
Filtrar
1.
J Pathol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721894

RESUMO

Small cell cervical carcinoma (SCCC) is the most common neuroendocrine tumor in the female genital tract, with an unfavorable prognosis and lacking an evidence-based therapeutic approach. Until now, the distinct subtypes and immune characteristics of SCCC combined with genome and transcriptome have not been described. We performed genomic (n = 18), HPV integration (n = 18), and transcriptomic sequencing (n = 19) of SCCC samples. We assessed differences in immune characteristics between SCCC and conventional cervical cancer, and other small cell neuroendocrine carcinomas, through bioinformatics analysis and immunohistochemical assays. We stratified SCCC patients through non-negative matrix factorization and described the characteristics of these distinct types. We further validated it using multiplex immunofluorescence (n = 77) and investigated its clinical prognostic effect. We confirmed a high frequency of PIK3CA and TP53 alterations and HPV18 integrations in SCCC. SCCC and other small cell carcinoma had similar expression signatures and immune cell infiltration patterns. Comparing patients with SCCC to those with conventional cervical cancer, the former presented immune excluded or 'desert' infiltration. The number of CD8+ cells in the invasion margin of SCCC patients predicted favorable clinical outcomes. We identified three transcriptome subtypes: an inflamed phenotype with high-level expression of genes related to the MHC-II complex (CD74) and IFN-α/ß (SCCC-I), and two neuroendocrine subtypes with high-level expression of ASCL1 or NEUROD1, respectively. Combined with multiple technologies, we found that the neuroendocrine groups had more TP53 mutations and SCCC-I had more PIK3CA mutations. Multiplex immunofluorescence validated these subtypes and SCCC-I was an independent prognostic factor of overall survival. These results provide insights into SCCC tumor heterogeneity and potential therapies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725852

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Assuntos
Lipopolissacarídeos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9 , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Feminino , Lipopolissacarídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Transdução de Sinais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Regulação Neoplásica da Expressão Gênica
3.
Water Res ; 257: 121701, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38733962

RESUMO

Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.

4.
Heliyon ; 10(9): e30859, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774073

RESUMO

Canine circovirus (CanineCV), which is a new mammalian circovirus first reported in the United States in 2012, mainly causes diarrhea and vomiting in dogs. As CanineCV evolves and new subtypes emerge, there is an urgent need for new detection technologies to improve the sensitivity and detection rates of viruses in complex scenarios. A chip digital PCR(cdPCR) assay was established for the detection of CanineCV in this study. The results showed good reproducibility, specificity and a linear relationship; the minimum detection limit of CanineCV by cdPCR was 6.62 copies/µL, which is 10 times more sensitive than quantitative real-time PCR (qPCR). The qPCR-positive detection rate was 1 %, while CanineCV cdPCR (2.1 %) exhibited a greater positive detection rate. Fifteen complete genomes were sequenced and subdivided into CanineCV-1 and CanineCV-3. In conclusion, we developed a rapid, reliable, and specific cdPCR method for screening and monitoring canine CV.

5.
Water Res ; 257: 121686, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38705065

RESUMO

This study developed a new process that stably produced ammonium nitrate (NH4NO3), an important and commonly used fertilizer, from the source-separated urine by comammox Nitrospira. In the first stage, the complete conversion of ammonium to nitrate was achieved by comammox Nitrospira. In this scenario, the pH was maintained at 6 by adding external alkali, which also provided sufficient alkalinity for full nitrification. In the second stage, the NH4NO3 was produced directly by comammox Nitropsira by converting half of the ammonium in urine into nitrate. In this case, no alkali was added and pH automatically dropped and self-maintained at an extremely acidic level (pH 3-4). In both scenarios, negligible nitrite accumulation was observed, while the final product of the second stage contained ammonium and nitrate at the molar ratio of 1:1. The dominance of comammox Nitrospira over canonical ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was systematically proved by the combination of 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction, and metagenomics. Notably, metagenomic sequencing suggested that the relative abundance of comammox Nitrospira was over 20 % under the acidic condition at pH 3-4, while canonical AOB and NOB were undetectable. Batch experiments showed that the optimal pH for the enriched comammox Nitrospira was ∼7, which could sustain their activity in a wider pH range from 4 to 8 surprisingly but lost activity at pH 3 and 9. The findings not only present an application potential of comammox Nitrospira in nitrogen recovery from urine wastewater but also report the survivability of comammox bacteria in acidic environments.

6.
Clin Lung Cancer ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38705833

RESUMO

BACKGROUND: Immune checkpoint inhibitors have revolutionized non-small cell lung cancer (NSCLC) treatment but may pose greater technical challenges for surgery. This study aims to assess the feasibility and oncological effectiveness of video-assisted thoracoscopic surgery (VATS) for resectable stage III NSCLC after neoadjuvant immunochemotherapy. METHODS: Initial stage IIIA-IIIB NSCLC patients with neoadjuvant immunochemotherapy undergoing either VATS or open lobectomy at 6 medical centers during 2019-2023 were retrospectively identified. Perioperative outcomes and 2-year survival was analyzed. Propensity-score matching (PSM) was employed to balance patient baseline characteristics. RESULTS: Among the total 143 patients, PSM yielded 62 cases each for VATS and OPEN groups. Induction-related adverse events were comparable between the 2 groups. VATS showed a 14.5% conversion rate. Notably, VATS decreased numeric rating scales for postoperative pain, shortened chest tube duration (5[4-7] vs. 6[5-8] days, P = .021), reduced postoperative comorbidities (21.0% vs. 37.1%, P = .048), and dissected less N1 lymph nodes (5[4-6] vs. 7[5-9], P = .005) compared with thoracotomy. Even when converted, VATS achieves perioperative outcomes equivalent to thoracotomy. Additionally, over a median follow-up of 29.5 months, VATS and thoracotomy demonstrated comparable 2-year recurrence-free survival (77.20% vs. 73.73%, P = .640), overall survival (87.22% vs. 88.00%, P = .738), cumulative incidences of cancer-related death, and recurrence patterns. Subsequent subgroup comparisons and multivariate Cox analysis likewise revealed no statistical difference between VATS and thoracotomy. CONCLUSION: VATS is a viable and effective option for resectable stage III NSCLC patients following neoadjuvant immunochemotherapy, leading to decreased surgical-related pain, earlier chest tube removal, reduced postoperative complications, and similar survival outcomes compared to thoracotomy.

8.
Water Res ; 257: 121692, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38713935

RESUMO

Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.

9.
J Mater Chem B ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726947

RESUMO

Powder-based hemostatic technology has offered unprecedented opportunities in surgical sealing and repair of irregularly shaped and noncompressible wounds. Despite their routine use, existing clinical hemostatic powders are challenged either by poor mechanical properties or inadequate adhesion to bleeding tissues in biological environments. Here, inspired by the mussel foot proteins' fusion assembly strategy, a novel silk fibroin-based hemostatic powder (named as SF/PEG/TA) with instant and robust adhesion performance is developed. Upon absorbing interfacial liquids, the SF/PEG/TA powders rapidly swell into micro-gels and subsequently contact with each other to transform into a macroscopically homogeneous hydrogel in situ, strengthening its interfacial bonding with various substrates in fluidic environments. The in vitro and in vivo results show that the SF/PEG/TA powder possesses ease of use, good biocompatibility, strong antibacterial activities, and effective blood clotting abilities. The superior hemostatic sealing capability of the SF/PEG/TA powder is demonstrated in the rat liver, heart, and gastrointestinal injury models. Moreover, in vivo investigation of rat skin incision and gastrointestinal perforation models validates that the SF/PEG/TA powder promotes wound healing and tissue regeneration. Taken together, compared to existing clinical hemostatic powders, the proposed SF/PEG/TA powder with superior wound treatment capabilities has high potential for clinical hemostasis and emergency rescue.

10.
Talanta ; 275: 126090, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642544

RESUMO

A highly affordable, sensitive and portable detection platform for the quantitative identification of sodium copper chlorophyllin (SCC) in food and environment is a crucial need. Even though many carbon dots (CDs) based sensors have been developed, few reports on using CDs as optical probes for SCC detection have been published so far. In this paper, orange luminescent CDs (OLCDs) were prepared via solvothermal method, which have high fluorescence quantum yield (27.20 %) and excellent photostability. OLCDs can detect SCC via inner filter effect (IFE), with fast response, high selectivity, outstanding sensitivity and superior anti-interference ability. Benefiting from the remarkable properties of OLCDs, a portable sensing platform was triumphantly constructed, which facilitated the in situ, real-time quantitative determination of SCC in diverse actual samples, by catching the fluorescence change of OLCDs-based paper sensors via smartphone RGB colorimetric analysis. This first CDs-based smart sensing system displays great potential for quantification of SCC in various fields.

11.
MedComm (2020) ; 5(4): e537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617434

RESUMO

Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.

12.
Water Res ; 256: 121651, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657312

RESUMO

The broader reuse of sewage sludge as a soil fertilizer or conditioner is impeded by the presence of toxic metals. Bioleaching, a process that leverages microbial metabolisms and metabolites for metal extraction, is viewed as an economically and environmentally feasible approach for metal removal. This study presents an innovative bioleaching process based on microbial oxidation of ammonia released from sludge hydrolysis, mediated by a novel acid tolerant ammonia-oxidizing bacteria (AOB), Ca. Nitrosoglobus. Over a span of 1024 days, a laboratory-scale bioleaching reactor processing anaerobically digested (AD) sludge achieved an in-situ pH of 2.5 ± 0.3. This acidic environment facilitated efficient leaching of toxic metals from AD sludge, upgrading its quality from Grade C to Grade A (qualified for unrestricted use), according to both stabilization and contaminants criteria. The improved quality of AD sludge could potentially reduce sludge disposal expenses and enable a broader reuse of biosolids. Furthermore, this study revealed a pH-dependent total ammonia affinity of Ca. Nitrosoglobus, with a higher affinity constant at pH 3.5 (67.3 ± 20.7 mg N/L) compared to pH 4.5-7.5 (7.6 - 9.6 mg N/L). This finding indicates that by optimizing ammonium concentrations, the efficiency of this novel ammonium-based bioleaching process could be significantly increased.


Assuntos
Compostos de Amônio , Reatores Biológicos , Esgotos , Compostos de Amônio/metabolismo , Amônia/metabolismo , Concentração de Íons de Hidrogênio , Metais , Eliminação de Resíduos Líquidos/métodos
13.
Chemosphere ; : 142117, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670501

RESUMO

The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT=4 h and nano-MgO dosage=0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.

14.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621864

RESUMO

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Assuntos
Medicamentos de Ervas Chinesas , Excipientes , Excipientes/química , Medicina Tradicional Chinesa , Água/química , Medicamentos de Ervas Chinesas/química
15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 571-579, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621860

RESUMO

In recent years, as people's living standards continue to improve, and the pace of life accelerates dramatically, the demand and quality of traditional Chinese medicine(TCM) services from patients continue to rise. As an essential supplement to the existing forms of TCM application, such as Chinese patent medicine, decoction, and formulated granules, presonalized TCM preparations is facing an increasing market demand. Currently, manual and semi-mechanized production are the primary production ways in presonalized TCM preparations. However, the production process control level is low, and digitalization and informatization need to be improved, which restricts the automated and intelligent development of presonalized TCM preparations. Presonalized TCM preparations faces a significant opportunity and challenge in integrating with intelligent manufacturing through research and development of intelligent equipment and core technology. This paper overviews the connotation and characteristics of intelligent manufacturing and summarizes the application of intelligent manufacturing technologies such as "Internet of things" "big data", and "artificial intelligence" in the TCM industry. Based on the innovative research and development model of "intelligent classification of TCM materials, intelligent decision making of prescription and process, and online control and intelligent production" of presonalized TCM preparations, the research practice and achievements from our research group in the field of intelligent manufacturing of presonalized TCM preparations are introduced. Ultimately, the paper proposes the direction for developing intelligent manufacturing of presonalized TCM preparations, which will provide a reference for the research and application of automation and intelligence of presonalized TCM preparations.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Controle de Qualidade , Tecnologia Farmacêutica , Inteligência
16.
Zhongguo Zhong Yao Za Zhi ; 49(3): 618-624, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621865

RESUMO

In the process of preparing presonalized concentrated watered pills, the decoction needs to be concentrated by heat and mixed with medicinal slices or powder to prepare a wet mass. However, some of the traditional Chinese medicine(TCM) components are easily decomposed or transformed by heat. In order to optimize the preparation process of presonalized TCM concentrated watered pills and reduce the loss of heat-unstable components in prescriptions, this study uses five compound TCM prescriptions containing heat-unstable components as model prescriptions, namely the Linggui Zhugan Formula, Xiaochengqi Formula, Sanpian Formula, Xiaoer Qixing Formula, and Xiaoyao Formula. Based on the two kinds of preparation process of presonalized concentrated watered pills previously established by our research group, whole extract concentrated watered pills and concentrated watered pills without excipients are prepared, respectively. Characteristic maps are measured and compared with those of the corresponding decoction. The results show that the characteristic maps of the concentrated watered pills without excipients of the five model prescriptions are very close to those of the decoction, and the number of characteristic peaks and peak areas are higher than those of whole extract concentrated watered pills. In addition, the peak area of some peaks is higher than that of the corresponding decoction. Thus, it is recommended to select the preparation process of prescription-based concentrated watered pills without excipients based on the "unification of medicines and excipients" to preserve those heat-unstable components more effectively when the prescription contains a heat-unstable component of TCM. This study provides a basis for the subsequent reasonable development and application of presonalized TCM pills.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Excipientes , Temperatura Alta , Prescrições
17.
Front Cell Dev Biol ; 12: 1353860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601081

RESUMO

Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.

18.
Biomed Pharmacother ; 174: 116582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642504

RESUMO

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Assuntos
Catequina/análogos & derivados , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Chá , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Chá/química , Camundongos , Ácidos Graxos Voláteis/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico
20.
Food Chem Toxicol ; 187: 114622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531469

RESUMO

Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.


Assuntos
Agaricales , Doença Hepática Induzida por Substâncias e Drogas , Intoxicação Alimentar por Cogumelos , Masculino , Camundongos , Animais , Alfa-Amanitina/toxicidade , Camundongos Endogâmicos ICR , RNA Polimerase II/genética , Rim , Inflamação , Perfilação da Expressão Gênica , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA