Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Medicine (Baltimore) ; 103(28): e38867, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996143

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) represents the most prevalent type of lung cancer. SHOX2 and RASSF1A methylation have been identified as important biomarkers for diagnosis and prognosis of lung cancer. Bronchoalveolar lavage fluid (BALF) exhibits good specificity and sensitivity in diagnosing pulmonary diseases, but its acquisition is challenging and may cause discomfort to patients. In clinical, plasma samples are more convenient to obtain than BALF; however, there is little research on the concurrent detection of SHOX2 and RASSF1A methylation in plasma. This study aims to assess the diagnostic value of a combined promoter methylation assay for SHOX2 and RASSF1A in early-stage LUAD using plasma samples. METHODS: BALF and blood samples were obtained from 36 early-stage LUAD patients, with a control group of nineteen non-tumor individuals. The promoter methylation levels of SHOX2 and RASSF1A in all subjects were assessed using the human SHOX2 and RASSF1A gene methylation kit. RESULTS: The methylation detection rate of SHOX2 and RASSF1A in plasma was 61.11%, slightly lower than that in BALF (66.7%). The Chi-square test revealed no significant difference in the methylation rate between BALF and plasma (P > 0.05). The area under the receiver operating characteristic (ROC) curve analysis for blood was 0.806 (95% CI, 0.677 to 0.900), while for BALF it was 0.781 (95% CI, 0.649 to 0.881). Additionally, we conducted an analysis on the correlation between SHOX2 and RASSF1A methylation levels in plasma with gender, age, tumor differentiation, pathologic classification, and other clinicopathological variables; however, no significant correlations were observed. CONCLUSIONS: Measurement of SHOX2 and RASSF1A methylation for early diagnosis of LUAD can be achieved with high sensitivity and specificity by using plasma as a substitute for BALF samples.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Metilação de DNA , Detecção Precoce de Câncer , Proteínas de Homeodomínio , Neoplasias Pulmonares , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/sangue , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Detecção Precoce de Câncer/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/sangue , Líquido da Lavagem Broncoalveolar/química , Curva ROC , Adulto , Sensibilidade e Especificidade , Estudos de Casos e Controles
2.
Infect Drug Resist ; 17: 2531-2540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933777

RESUMO

Purpose: Previous studies have indicated that the development of severe adverse events is associated with linezolid peak concentration (Cmax), but the factors affecting linezolid Cmax and evidences on therapeutic drug monitoring to anticipate toxicity in drug-resistant tuberculosis (DR-TB) patients have not been clarified clearly. This study aimed to explore the factors influencing linezolid Cmax and investigate the association between linezolid concentration and hematological toxicity. Patients and Methods: This study included patients with drug-resistant tuberculosis treated with linezolid from January 2022 to September 2023. We analyzed the factors affecting linezolid Cmax using chi-squared and binary logistic regression. The diagnostic utility of linezolid Cmax in predicting hematological toxicity was evaluated using receiver operating characteristic (ROC) analysis. Results: A total of 76 patients were enrolled in the study. 63.20% met the standard rates for linezolid Cmax. Age (P=0.036), weight (P=0.0016), and creatinine clearance (P=0.0223) significantly correlated with the Cmax. Hematological toxicity was observed in 46.05% (35/76) of patients, characterized by thrombocytopenia (31.58%, 24/76), anemia (6.58%, 5/76), and leukopenia (21.05%, 16/76). ROC curve analysis confirmed the predictive value of linezolid Cmax for thrombocytopenia with an area under curve of 0.728. Conclusion: Suboptimal linezolid Cmax was prevalent among patients with DR-TB, with age, weight, and renal function emerging as influential factors. Elevated linezolid Cmax increases the risk of thrombocytopenia. Meticulous monitoring of linezolid Cmax is imperative during anti-DR-TB therapy to tailor treatment and mitigate hematological toxicity.

3.
Heliyon ; 10(11): e31864, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882339

RESUMO

Background: Lung adenocarcinoma (LUAD) is the primary form of lung cancer, yet the reliable biomarkers for early diagnosis remain insufficient. Thioredoxin reductase (TrxR) is strongly linked to the occurrence, development, and drug resistance of lung cancer, making it a potential biomarker. However, further research is required to assess its diagnostic value in LUAD. Methods: A retrospective analysis was performed on patients who underwent pulmonary nodule resection at our center from 2018 to 2022. Clinical data, including preoperative TrxR levels, imaging, and laboratory characteristics, were identified as study variables. Two prediction models were constructed using multiple logistic regression, and their prediction performance was evaluated comprehensively. Besides, bioinformatics analyses of TrxR coding genes including differential expression, functional enrichment, immune infiltration, drug sensitivity, and single-cell landscape were performed based on TCGA database, which were subsequently validated by Human Protein Atlas. Results: A total of 506 eligible patients (72 benign lesions, 77 AISs, 185 MIAs and 172 IACs) were identified in the clinical cohort. Two TrxR-based models were developed, which were able to distinguish between benign and malignant pulmonary nodules, as well as pathological subtypes of LUAD, respectively. The models exhibited good predictive ability with all AUC values ranging from 0.7 to 0.9. Based on calibration curves and clinical decision analysis, the nomogram models showed high reliability. Functional analysis indicated that TXNRD1 primarily participated in cell cycle and lipid metabolism. Immune infiltration analysis showed that TXNRD1 has a strong association with immune cells and could impact immunotherapy. Then, we identified small molecular compounds that inhibit TXNRD1 and confirmed TXNRD1 expression by single-cell landscape and immunohistochemistry. Conclusion: This study validated the diagnostic value of TrxR and TXNRD1 in clinical cohorts and transcriptional data, respectively. TrxR and TXNRD1 could be used in the risk diagnosis of early LUAD and facilitate personalized treatment strategies.

4.
medRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746400

RESUMO

Purpose: To develop an anthropomorphic diagnosis system of pulmonary nodules (PN) based on Deep learning (DL) that is trained by weak annotation data and has comparable performance to full-annotation based diagnosis systems. Methods: The proposed system uses deep learning (DL) models to classify PNs (benign vs. malignant) with weak annotations, which eliminates the need for time-consuming and labor-intensive manual annotations of PNs. Moreover, the PN classification networks, augmented with handcrafted shape features acquired through the ball-scale transform technique, demonstrate capability to differentiate PNs with diverse labels, including pure ground-glass opacities, part-solid nodules, and solid nodules. Results: The experiments were conducted on two lung CT datasets: (1) public LIDC-IDRI dataset with 1,018 subjects, (2) In-house dataset with 2740 subjects. Through 5-fold cross-validation on two datasets, the system achieved the following results: (1) an Area Under Curve (AUC) of 0.938 for PN localization and an AUC of 0.912 for PN differential diagnosis on the LIDC-IDRI dataset of 814 testing cases, (2) an AUC of 0.943 for PN localization and an AUC of 0.815 for PN differential diagnosis on the in-house dataset of 822 testing cases. These results demonstrate comparable performance to full annotation-based diagnosis systems. Conclusions: Our system can efficiently localize and differentially diagnose PNs even in resource-limited environments with good robustness across different grade and morphology sub-groups in the presence of deviations due to the size, shape, and texture of the nodule, indicating its potential for future clinical translation. Summary: An anthropomorphic diagnosis system of pulmonary nodules (PN) based on deep learning and weak annotation was found to achieve comparable performance to full-annotation dataset-based diagnosis systems, significantly reducing the time and the cost associated with the annotation. Key Points: A fully automatic system for the diagnosis of PN in CT scans using a suitable deep learning model and weak annotations was developed to achieve comparable performance (AUC = 0.938 for PN localization, AUC = 0.912 for PN differential diagnosis) with the full-annotation based deep learning models, reducing around 30%∼80% of annotation time for the experts.The integration of the hand-crafted feature acquired from human experts (natural intelligence) into the deep learning networks and the fusion of the classification results of multi-scale networks can efficiently improve the PN classification performance across different diameters and sub-groups of the nodule.

5.
BMC Pulm Med ; 24(1): 145, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509507

RESUMO

BACKGROUND: The potential pathogenic mechanism of idiopathic pulmonary fibrosis is widely recognized to involve immune dysregulation. However, the current pool of studies has yet to establish a unanimous agreement regarding the correlation between various types of immune cells and IPF. METHODS: By conducting a two-sample Mendelian randomization analysis using publicly available genetic data, the study examined the causal relationship between IPF and 731 immune cells. To ensure the reliability of the results, combined sensitivity analyses and inverse Mendelian analyses were conducted. Moreover, within subgroups, multivariate Mendelian randomization analyses were utilized to investigate the autonomous causal connection between immune cell characteristics and IPF. RESULTS: After adjusting for false discovery rate, it was discovered that 20 immunophenotypes exhibited a significant association with IPF. After subgrouping for multivariate Mendelian randomization analysis, there were six immunophenotypes that remained significantly associated with IPF. These included CD33 + HLA DR + CD14dim (OR = 0.96, 95% CI 0.93-0.99, P = 0.033), HLA DR + NK (OR = 0.92, 95% CI 0.85-0.98, P = 0.017), CD39 + CD8 + T cell %T cell (OR = 0.93, 95% CI 0.88-0.99, P = 0.024), CD3 on activated & secreting Treg (OR = 0.91, 95% CI 0.84-0.98, P = 0.026), PDL-1 on CD14- CD16 + monocyte (OR = 0.89, 95% CI 0.84-0.95, P = 8 × 10-4), and CD45 on CD33 + HLA DR + CD14- (OR = 1.08, 95% CI 1.01-1.15, P = 0.011). CONCLUSION: Our study reveals a noteworthy association between IPF and various immune cells, providing valuable insights for clinical research and aiding the advancement of immunologically-based therapeutic strategies.


Assuntos
Fibrose Pulmonar Idiopática , Análise da Randomização Mendeliana , Humanos , Reprodutibilidade dos Testes , Fibrose Pulmonar Idiopática/genética , Linfócitos T CD8-Positivos , Antígenos HLA-DR , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA